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Separation logic’s compositionality and local reasoning properties have led to significant advances in scalable
static analysis. But program analysis has new challenges—many programs display computational effects and,
orthogonally, static analyzers must handle incorrectness too. We present Outcome Separation Logic (OSL), a
program logic that is sound for both correctness and incorrectness reasoning in programs with varying effects.
OSL has a frame rule—just like separation logic—but uses different underlying assumptions that open up local
reasoning to a larger class of properties than can be handled by any single existing logic.

Building on this foundational theory, we also define symbolic execution algorithms that use bi-abduction
to derive specifications for programs with effects. This involves a new tri-abduction procedure to analyze
programs whose execution branches due to effects such as nondeterministic or probabilistic choice. This work
furthers the compositionality promised by separation logic by opening up the possibility for greater reuse of
analysis tools across two dimensions: bug-finding vs verification in programs with varying effects.

1 INTRODUCTION

Compositional reasoning using separation logic [Reynolds 2002] and bi-abduction [Calcagno et al.
2009] has helped scale static analyses to industrial software with hundreds of millions of lines of
code, making it possible to analyze code changes without disrupting the fast-paced engineering
culture that developers are accustomed to [Calcagno et al. 2015; Distefano et al. 2019].

While the ideal of fully automated program verification remains elusive, analysis tools can boost
confidence in code correctness by ensuring that a program will not go wrong in a variety of ways. In
languages like C or C++, this includes ensuring that a program will not crash due to a segmentation
fault or leak memory. However, a static analyzer failing to prove the absence of bugs does not
imply that the program is incorrect; it could be a false positive.

Many programs are, in fact, incorrect. Analysis tools capable of finding bugs are thus in some
cases more useful than verification tools, since the reported errors lead directly to tangible code
improvements [Le et al. 2022]. Motivated by the need to identify bugs, Incorrectness Logic [O’Hearn
2020] and Incorrectness Separation Logic (ISL) [Raad et al. 2020, 2022] were recently introduced.

While ISL enjoys compositionality just like separation logic, the semantics of SL and ISL are
incompatible—specifications and analysis tools cannot readily be shared between them. Further,
the soundness of local reasoning in each separation logic variant relies on particular assumptions,
meaning that no single program logic has a frame rule that can handle all of the following:

Computational Effects. The idea that program commands must be local actions [Calcagno et al.
2007] is central to the frame rule. In order to achieve this, the semantics of memory allocation is
often forced to be nondeterministic [Yang and O'Hearn 2002], but this approach is not suitable for
local reasoning in alternative execution models such as probabilistic computation.

May and Must properties. Separation logic can only express properties that must occur, whereas
ISL can only express properties that may occur. In order to capture both correctness and incorrect-
ness properties, we must handle both may and must properties.

Under-approximation. Efficiently reasoning about incorrectness involves the ability to inspect
a subset of the program paths—the ones that lead to a bug. But many separation logics are fault
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avoiding; the precondition must specify the resources needed to execute all traces, and therefore
the entire program must be inspected.

In this paper, we show that local reasoning is sound under new assumptions, which do not force any
particular evaluation model and are compatible with both correctness and incorrectness reasoning.
To that end, we introduce Outcome Separation Logic (OSL), a single program logic that can handle
all of the aforementioned scenarios. Our contributions are as follows.

Outcome Separation Logic. Our main contribution is Outcome Separation Logic (OSL), an exten-
sion of the recently introduced Outcome Logic (OL) [Zilberstein et al. 2023] for reasoning about
pointer programs. While OL already supports correctness and incorrectness reasoning in programs
with a variety of effects and much of the metatheory and inference rules carry over from it, the key
novelty of OSL is that it is fundamentally based on separation-logic-style heap assertions, which
allowed us to develop a frame rule to enable local reasoning and compositional symbolic execution.

This was no simple feat; while the soundness of the frame rule is intricate and nuanced even in
partial correctness Hoare Logic [Yang and O’Hearn 2002], moving to a logic that supports a variety
of assertions about termination, reachability, and probabilistic reasoning complicates the story
significantly. OSL is the first program logic that supports local reasoning for both correctness and
incorrectness, with the ability to also under-approximate program paths. On top of that, using an
algebraic representation of choice, the soundness proof of our frame rule extends to other execution
models too, such as probabilistic programs.

Symbolic execution algorithms. As a proof of concept for how OSL enables the consolidation of
correctness and incorrectness analysis, we present symbolic execution algorithms to analyze C-like
pointer programs. The core algorithm finds all the reachable outcomes, and is therefore tailored
for correctness reasoning. We also define a single-path variant—modeled after Incorrectness Logic
based bug-finding algorithms (Pulse [Raad et al. 2020] and Pulse-X [Le et al. 2022])—inferring
specifications in which the postcondition is just one of the (possibly many) outcomes. While
enjoying the scalability benefit of dropping paths, our algorithm can also soundly re-use procedure
summaries generated by the correctness algorithm so as to not re-analyze the same procedure.

These algorithms are based on bi-abduction, which handles sequential programs by reconciling
the postcondition of one precomputed spec with the precondition of the next Calcagno et al. [2009,
2011]. Since programs with effects are not purely sequential, but rather have branching that arises
from, e.g., nondeterministic or probabilistic choice, we also introduce tri-abduction, a new form of
inference for composing branches in an effectful program.

We begin in Section 2 by outlining the challenges of local reasoning in a highly expressive program
logic. Next, in Sections 3 and 4, we define Outcome Separation Logic (OSL), show three instantiations,
and prove the soundness of the frame rule. In Section 5, we define our symbolic execution algorithm
and tri-abduction, which is inspired by bi-abduction but is used for branching rather than sequential
composition. In Section 6, we examine two case studies to show the applicability of these algorithms
and finally we conclude in Sections 7 and 8 by discussing outlooks and related work.

2 LOCAL REASONING FOR CORRECTNESS AND INCORRECTNESS WITH EFFECTS

We begin by examining how the local reasoning principles of separation logic, along with bi-
abductive inference, underlie scalable analysis techniques. These analyses symbolically execute
programs and report the result as Hoare Triples {P} C {Q}: the postcondition Q describes any result
of running C in a state satisfying the precondition P [Hoare 1969]. Hoare triples are compositional;
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a specification for the sequence of two commands is constructed from specifications for each one.

Py {Q} {0} G {R}
{P} C15C2 {R}

SEQUENCE

The SEQUENCE rule is a good starting point for building scalable program analyses, but it is not quite
compositional enough. The postcondition of C; must exactly match the precondition of C,, making
it difficult to apply this rule, particularly if C; and C, are procedure calls for which we already have
pre-computed summaries (in the form of Hoare Triples), none of which exactly match. In response,
separation logic offers a second form of (spatial) compositionality via the FRAME rule, which adds
information about unused program resources F to the pre- and postcondition of a completed proof.

{P} C {0}
{P+F}C{Q=«F}

But framing does not immediately answer how to sequentially compose triples. Given {P; } C; {O1}
and {P,} C; {Q2}, it is unclear what—if anything—can be added to make Q; match P,. This is where
bi-abduction comes in—a technique that finds a missing resource M and leftover frame F to make
the entailment Q; * M £ P, = F hold. Using bi-abduction, we get a more usable sequence rule that
stitches together two precomputed summaries without reexamining either program fragment.

{P1} C1 {01} Q1 *MEP,*«F {P2} C2 {Q2}

B1-ABDUCTIVE SEQUENCE
{P1x M} Cy §C; {Q2 = F}

While bi-abduction has enabled industrial strength static analyzers to scale to massive codebases,
current developments use disjoint algorithms for correctness vs incorrectness, and do not support
computational effects such as probabilistic choice. In the remainder of this section, we will examine
why this is the case and explain how our logic allows for unified bi-abductive analysis algorithms.

2.1 Interlude: Reasoning about Effects and Incorrectness

While identifying bugs in pure programs is already challenging, effects add more complexity. This
is demonstrated below; the program crashes because it attempts to dereference a null pointer.

{ok : x = null} [x] « 1{er: x = null}

The specification is semantically straightforward; if x is null then the program will crash.! But now,
rather than dereferencing a pointer that is known to be invalid, suppose we dereference a pointer
that might be invalid, and—crucially—whether or not it is allocated comes down to nondeterminism.
The following is one such scenario; x is obtained using malloc, which either returns a valid pointer
or null. In Hoare Logic, the best we can do is specify this program using a disjunction.

{ok : emp} x :== malloc() § [x] « 1 {(ok :x+ 1) V (er: x = null)}

While the above specification hints that the program has a bug, it is in fact inconclusive since the
disjunctive postcondition does not guarantee that both outcomes are reachable by actual program
executions. Hoare Logic is fundamentally unable to characterize this bug, since the postcondition
must describe all possible end states of the program; we cannot express something that may happen.

Two solutions for characterizing true bugs have been proposed. The first one is Incorrectness
Logic (IL), which uses an alternative semantics to express that all states described by the postcon-
dition are reachable from a state described by the precondition [O’Hearn 2020]. Specifying the

1Caveat: nontermination is an effect, and the typical partial correctness interpretation of SL is not suitable for incorrectness.
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aforementioned bug is possible using Incorrectness Logic; the following triple stipulates that all
the states described by the postcondition are reachable, including ones where the error occurs.

[ok : emp] x := malloc() § [x] « 1 [(ok : x + 1) V (er : x = null)]

A variant of IL has a frame rule [Raad et al. 2020] and can underlie bi-abductive symbolic execution
algorithms [Le et al. 2022]. However—just like separation logic—IL is specialized to nondeterministic
programs and is not suitable for other effects. In addition, being inherently under-approximate, the
semantics of IL cannot capture correctness properties, which must cover all the reachable outcomes.
As such, different analyses and procedure summaries must be used for verification vs bug-finding.

In this paper, we take a different approach based on Outcome Logic (OL), which is compatible with
both correctness and incorrectness while also supporting a variety of monadic effects [Zilberstein
et al. 2023]. OL is similar to Hoare Logic, but the pre- and postconditions of triples describe collections
of states rather than individual ones. A new logical connective @—the outcome conjunction—
guarantees the reachability of multiple outcomes. For instance, the aforementioned bug can be
characterized using the following OL specification by replacing the disjunction in the postcondition.

(ok : emp) x := malloc() § [x] « 1 ((ok: x + 1) & (er : x = null))

The above triple says that running the program in the empty heap will result in two reachable out-
comes. In this case, the program is nondeterministic and its semantics is accordingly characterized
by a set of program states S. The outcome conjunction tells us that there exist nonempty sets S;
and S, with S = §; U S, such that S; £ (ok : x > 1) and S, £ (er : x = null). Since both outcomes
are satisfied by nonempty sets, we know that they are both reachable by a real program trace.
However, for efficiency, specifying the bug above should not require recording information about
the ok outcome. In incorrectness reasoning, it is desirable to drop outcomes so as to only explore
some of the program paths [O’Hearn 2020; Le et al. 2022]. We achieve this in OL by replacing the
extraneous outcome with T, ensuring that the ok program path will not continue to be analyzed.

(ok : emp) x := malloc() § [x] « 1 {((er: x =null) & T)

Outcomes apply to more effects too. For example, Outcome Logic can also be used to reason about
probabilistic programs, where the (weighted) outcome conjunction additionally quantifies the
likelihoods of outcomes. For example, the following program attempts to ping an IP address, which
succeeds 99% of the time, and fails with probability 1% due to an unreliable network connection.

(ok : true) x := ping(192.0.2.1) ((ok : x = 0) @9y, (er: x = 1))

Our goal in this paper is to extend local reasoning to Outcome Logic by augmenting it with a frame
rule, and to use the resulting theory to build bi-abductive symbolic execution algorithms for both
correctness (finding all reachable outcomes) and incorrectness (only exploring one program path at
a time) in pointer programs with varying effects. We will next see the challenges behind designing
a frame rule powerful enough to achieve that goal.

2.2 Designing a More Powerful Frame Rule

In the development of the frame rule, Yang and O’Hearn [2002] remarked that local reasoning “turns
out to be surprisingly delicate, and it is not difficult to find situations where the rule doesn’t work.
So a careful treatment of soundness, appealing to the semantics of a specific language, is essential”
Today, there are many frame rules that appeal to the semantics of their respective situations, relying
on properties such as nondeterminism, partial correctness, or under-approximation for soundness.

Our challenge is to design a frame rule supporting all of those features, which means that
fundamental questions must be addressed head on, without appealing to a particular semantic
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model. We follow the basic formula of standard separation logic [Yang and O’Hearn 2002; Calcagno
et al. 2007], as it is semantically closest to Outcome Logic.

Local Actions. Framing is sound if all program actions are local [Calcagno et al. 2007]. Roughly
speaking, C is local if its behavior does not change as pointers are added to the heap. Most actions
are inherently local, e.g., dereferencing a pointer depends only on a single heap cell.

But memory allocation is—or at least, some implementations of it are—inherently non-local;
allocating a new address involves reaching into an unknown region of the heap. To see why this is
problematic, consider a deterministic allocator that always returns the smallest available address.
Allocating a pointer in the empty heap is guaranteed to return the address 1, motivating the SL
triple below on the left. However, applying the frame rule can easily invalidate this spec (right).

{emp} x := alloc() {x =1 Ax > —}

{emp} x :==alloc() {(x =1 Ax — -} o Dxmalloc) = Ao —rg I}FRAME

Since y can have address 1, the fresh pointer x cannot also be equal to 1, so this application of the
frame rule is clearly unsound. Making memory allocation nondeterministic can solve the problem
[Yang and O’Hearn 2002]. If, in the above program, x could be assigned any fresh address, then the
postcondition cannot say anything specific about which address we got. We cannot conclude that
x =1, but rather only that x =1V x =2V .- -, which remains true in any larger heap.

Moving from Hoare Logic to Outcome Logic, this approach has two problems. First, Outcome
Logic is parametric on an evaluation model, so the availability of nondeterminism is not a given;
we need a strategy for allocation in the presence of any computational effects. Second, even
with nondeterminism, locality is complicated by the ability to reason about reachable states. The
problematic interaction between framing and reachability is displayed in the following example,
which explicitly states that x = 1 is a reachable outcome of allocating x in the empty heap.

(ok : emp) x = alloc() ((ok: x =1) & (ok : x # 1))
(ok:y > 1) x:==alloc() ((ok:x=1Ay—> 1)@ (ck: x #1 Ay 1))

FrRaAME

This inference is invalid; the precondition does not preclude y having address 1, in which case x = 1
is no longer a reachable outcome. In OSL, we acknowledge that memory allocation is non-local
and instead ensure that triples cannot specify the result of an allocation too finely. This is achieved
by altering the semantics of a triple (@) C (i) to require that if ¢ holds in some initial state, then i
holds after running C using any allocation semantics. By universally quantifying the allocator, we
ensure that any concrete semantics is captured, while retaining soundness of the frame rule.

Fault Avoidance. Typical formulations of separation logic are fault avoiding, meaning that the
precondition must imply that the program execution does not encounter a memory fault [Reynolds
2002; Yang and O’Hearn 2002]. Unlike in Hoare Logic, the triple {true} C {true} is not necessarily
valid, which is crucial to the frame rule. If the triple {true} [x] « 1 {true} were valid, then the
frame rule would give us {x = 2 * true} [x] « 1 {x > 2 * true}, which is clearly false.

The problem with fault avoidance is that it involves inspecting the entire program, whereas OSL
must be able to ignore some paths to more efficiently reason about incorrectness. Fortunately, OSL
preconditions need not be safe. Following the previous example, (ok : true) [x] < 1 (ok : true) is
not a valid OSL specification since ok : true is not a reachable outcome of running the program.
Rather, if the precondition of an OSL triple is unsafe, then the postcondition can only be T, i.e,
(ok : true) [x] « 1 (T). Framing information into the latter triple is perfectly sound since the T
will absorb any outcome, including undefined behavior: (ok : x > 2 x true) [x] « 1 (T).

2We remark that other proof strategies exist including using heap monotonicity (ISL) and frame baking (higher-order
separation logics), a comparison to these approaches is available in Section 7.
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OSL allows us to decide how much of the memory footprint to specify. In a correctness analysis
that covers all paths, the precondition must be safe for the entire program. If we instead want to
reason about incorrectness and drop paths, then it must only be safe for the paths we explore.

2.3 Symbolic Execution and Tri-Abduction

OSL provides a logical foundation for symbolic execution algorithms that are capable of both
verification and bug-finding. Our approach takes inspiration from industrial strength bi-abductive
analyzers (Abductor and Infer [Calcagno et al. 2009, 2015]), but paying greater attention to effects, as
the aforementioned tools may fail to find specifications for programs with control flow branching.

To see what goes wrong, let us examine a program that uses disjoint resources in the two
nondeterministic branches: ([x] « 1) + ([y] « 2). Using bi-abduction, we could conclude that
x +— — is a valid precondition for the first branch whereas y — — is valid for the second, but there
is no straightforward way to find a precondition valid for both branches. As a result, the program
must be re-evaluated with each candidate precondition to ensure that they are safe for all branches.

Calcagno et al. [2011, §4.3] acknowledged this issue, and suggested fixing it by re-running the
abduction procedure until nothing more can be added to each precondition. Rather than using two
passes (as Abductor already does), this approach would require a pass for each combination of
nondeterministic choices, which is exponential in the worst case. While a single-pass bi-abduction
algorithm has been proposed [Sextl et al. 2023], it still cannot handle all cases (e.g., see Remark 2).

We take a different approach, acknowledging that branching is fundamentally different from
sequential composition and requires a new type of inference, which we call tri-abduction. As
its name suggests, tri-abduction infers three components (to bi-abduction’s two). Given P; and
P,—preconditions for two branches—the goal is to find a single anti-frame M and two leftover
frames F; and F, such that M £ P; « F; and M k£ P, = F,, in order to compose the summaries for two
program branches, as demonstrated below.

(P1) C1 {Q1) Py« FiaM¢EPyxF, (P2) C3 (Q2)
(M) Cy +Cy ((Q1 % Fy) © (Q2 * F2))

TRrRI-ABDUCTIVE COMPOSITION

Tri-abduction does not replace bi-abduction; they work in complementary ways—bi-abduction is
used for sequential composition whereas tri-abduction composes branches arising from effects.
In addition, we are interested in bug-finding algorithms, which—similar to Pulse and Pulse-X
[Raad et al. 2020; Le et al. 2022]—do not traverse all the program paths. We achieve this using a
single-path version of the algorithm, producing summaries of the form (ok : P) C ((er: Q) @ T),
with only a single outcome specified and the remaining ones covered by T. The soundness of the
single-path approach is motivated by the fact that P @ Q = P & T; extraneous outcomes can be
converted to T, ensuring that those paths will not be explored. Just like in Pulse and Pulse-X, this
ability to drop outcomes allows the analysis to retain less information for increased scalability.

We formalize these concepts starting in Sections 3 and 4, where we define a program semantics
and Outcome Separation Logic and prove the soundness of the frame rule. Symbolic execution and
tri-abduction are defined in Section 5, and we examine case studies in Section 6.

3 PROGRAM SEMANTICS

We begin the technical development by defining the semantics for the underlying programming
language of Outcome Separation Logic. All instances of OSL share the same program syntax, but
this syntax is interpreted in different ways, corresponding to the choice mechanisms dictated by
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each instance’s computational effects. The syntax of the language is given below.

Cmd>C:

Act > c :=x:=e | x := alloc() | free(e) | [e1] < ez | x < [e] | error() | f(€)

skip | C1§Cy | C1 +C; | assume e | whileedo C | ¢

Expoeu=x|x|eoe| e (x € Var,k € Val, f € Proc,o € BinOp)

Commands C € Cmd are similar to those of Dijkstra’s [1975] Guarded Command Language
(GCL), containing skip, sequencing (C; § C;), choice (C; + C;) and while loops. Given a test e
(i.e., a Boolean-valued expression), conditionals are defined as syntactic sugar in the typical way:
if e then C; else C; = (assume e § Cy) + (assume —e § Cy). But—unlike GCL—assume also accepts
expressions that are interpreted over weights drawn from a set that has additional algebraic
properties described in Section 3.1 (and can also encode the Booleans). For example, weights in
randomized programs are probabilities p € [0, 1], and we can accordingly define a probabilistic
choice operator C; +, C, = (assume p 3 C;) + (assume 1 — p § Cz), which runs C; with probability
p and C; with probability 1 — p.

Atomic actions ¢ € Act can assign to variables (x := e), allocate (x := alloc()) and deallocate
(free(e)) memory, write ([e;] < e;) and read (x « [e]) pointers, crash (error()), and call procedures
(f (€)). Expressions can be variables x € Var, constants k € Val (e.g., integers, Booleans, and weights),
a variety of binary operations e; ¢ e; where ¢ € BinOp = {+, —, =, <, ...}, or logical negation —e.

In the remainder of this section, we will formally define denotational semantics for the language
above. This will first involve discussing the algebraic properties of the program weights, after
which we can define a (monadic) execution model to interpret sequential composition.

3.1 Algebraic Preliminaries

We first recall the definitions of some algebraic structures that will be used to instantiate the
program semantics for different execution models. Monoids model combining and scaling outcomes.

Definition 3.1 (Monoid). A monoid (A, +, 0) consists of a carrier set A, an associative binary operator
+: AX A — A, and an identity element 0 € A such that a+0 = 0+ a = a for all a € A. Additionally,
a monoid is partial if + is partial (+: A X A — A) and it is commutativeifa+b =b + a.

For example, ([0, 1], +, 0) is a partial commutative monoid that is commonly used in probabilistic
computation since probabilities come from the interval [0, 1] and addition is undefined if the sum
is greater than 1. Scalar multiplication ([0, 1], -, 1) is another monoid with with same carrier set,
but it is total rather than partial. Two monoids can be combined to form a semiring, as follows.

Definition 3.2 (Semiring). A semiring (A, +, -, 0, 1) consists of a carrier set A, along with an addition
operator +, a multiplication operator - and two elements 0, 1 € A such that:

(1) (A, +,0)is a commutative monoid.

(2) (A, -, 1) is a monoid (we sometimes omit - and write a - b as ab).

(3) Multiplication distributes over addition: a - (b+c¢) =ab+acand (b+c) -a=ba+ca
(4) 0 is the annihilator of multiplication: a- 0 =0-a =0

A semiring is partial if (A, +, 0) is instead a partial commutative monoid (PCM), but multiplication
remains total. In the case of a partial semiring, distributive rules only apply if b + c is defined.

We now define Outcome Algebras that give the interpretation of choice and weighting. The
carrier set A is used to represent the weight of an outcome. In deterministic and nondeterministic
evaluation models, this weight can be 0 or 1 (a Boolean), but in the probabilistic model, it can be
any probability in [0, 1]. The rules for combining these weights vary by execution model.
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Definition 3.3 (Outcome Algebra). An Outcome Algebra is a structure (A, +, -, 0, 1), which is a com-
plete, Scott continuous, naturally ordered, partial semiring, and:

(1) (A, <) is a complete partial order (cpo) and sup(A) = 1.

(2) If Xjes a; is defined, there exist (b;);er such that 3;c;b; = 1and Vi € L.a; = (X1 a5) - bi.
Appendix A defines Scott continuity, completeness, and more details about property (2).

Outcome Algebras can encode the following three interpretations of choice:

Definition 3.4 (Deterministic Outcome Algebra). A deterministic program has at most one outcome
(zero if it diverges). To encode this, we use an Outcome Algebra ({0, 1}, +, -, 0, 1) where the elements
{0, 1} are Booleans indicating whether or not an outcome has occurred. The sum operation is usual
integer addition, but is undefined for 1 + 1, since two outcomes cannot simultaneously occur in a
deterministic setting, and - is typical integer multiplication.

Definition 3.5 (Nondeterministic Outcome Algebra). The Boolean semiring ({0, 1}, V, A, 0, 1) repre-
sents nondeterminism. Similar to Definition 3.4, the elements indicate whether an outcome has
occurred, but now addition is logical disjunction so that multiple outcomes can occur.

Definition 3.6 (Probabilistic Outcome Algebra). Let {([0,1],+,-,0, 1) be an outcome algebra where +
is real-valued addition (and undefined if a + b > 1) and - is real-valued multiplication. The carrier
set [0, 1] indicates that each outcome has a probability of occurring.

In the style of Moggi [1991], the language semantics is monadic in order to sequence effects. We
now show how to construct a monad given any Outcome Algebra.

Definition 3.7 (Outcome Monad). Given an Outcome Algebra A = (A, +,,0, 1), we define a monad
(Wa, unit, bind), where W (S) = {m : S — A | Yscsupp(m) m(s) is defined} is the set of countably
supported weighting functions and the monad operations are defined as follows:

. 1 ifs=t .
unit(s)(¢) = { o e bind(m, f)(1) = " m(s) - f()(1)
sesupp(m)
We also let supp(m) = {s | m(s) # 0} and |m| = X scqupp(m) M(s). This monad is similar to the Giry
[1982] monad, but it is generalized to work over any partial semiring, rather than probabilities
[0,1] € R. It is fairly easy to see that ‘W obeys the monad laws, given the semiring laws.

So, a weighting function m € Wx(S) assigns a weight a € A to each program state s € S.
Definitions 3.4 to 3.6 gave interpretations for A in which ‘W (S) encodes deterministic, nondeter-
ministic, and probabilistic computation, respectively. In the (non)deterministic cases, m(s) € {0, 1},
indicating whether or not s is present in the collection of outcomes m. Due to the interpretation of
+ in Definition 3.4, the constraint that }};cqupp(m) m(s) is defined guarantees that m can contain at
most one outcome, whereas in the nondeterministic case, m can contain arbitrarily many. In the
probabilistic case, m(s) € [0, 1] and gives the probability of the outcome s in the distribution m.

The semiring operations can be lifted to weighting functions. We will overload some notation
to also refer to pointwise liftings as follows: m; + my = As.(my(s) + mz(s)), 0 = As.0,and a - m =
As.(a - m(s)). When the nondeterministic algebra (Definition 3.5) is lifted in this way, the result is
isomorphic to the powerset monad with m; + my = my; Umgy and 0 = 0.

Now, in order to represent errors and undefined states in the language semantics, we will define
a monad transformer [Liang et al. 1995] based on the coproduct S + E + 1 where S is the set of
program states, E is the set of errors, and we additionally include an undefined symbol. We define
the following three injection functions, plus shorthand for the undefined element:

Igk: S—>S+E+1 lg:E—>S+E+1 Tundef: 1 > S+E+1 undef = fyndef (%)



Outcome Separation Logic: Local Reasoning for Correctness and Incorrectness with Computational Effects 9

Commands  [~],jjoc : Cmd = S X H — Wz (St)

[skip]aioc (s, B) = unit(s, h)
[C1 3 Calaoe (55 B) = bind ([Ci]lapioc (55 1), [Calatioc)
[C1 + Celatioc (s, 1) = [Ci]Latioc (5 1) + [Celatioc (s, 7)
alloc (1) = [e]] (s) - unit(s,h) if [e] (s) € A
[while e do Cllj1oc (5, 1) = Ifp(F(C ealloc)) (5, h)

where F(C,e,alloc) (f) (s,h) = { z:‘i‘tj((su’i}%alloc (s, h)’f) ii %Z% 23 : 3

[assume e]

Actions  [~],ji0c : Act = S X H — Wg(St) ‘

[x = el iioc (s, B) = unit(s[x +— [e] (s)], h)
[x = alloc()]j0c (s, h) = bindqy (alloc(s, k), A(¢, v).unit(s[x — €], h[£ > v]))
[free(e)],ioc (s, h) = update(s, h, [e] (s),s, h[[e] (s) — L])
[ler] — exlaoe (5. h) = update(s, b [er] (5), 5. hlLer] (5) = [ez] (5)1)
[x < [ellaioc (s, h) = update(s, b, [e] (s),s[x — h([e] (s))], h)
[error()] 10 (s, B) = error(s, h)
[ @ latoe (1) = [Clape (1% > [€] (). h)  where (C.%) = P(f)

unit(s’, h’) if k() € Val

error(s, h) = unitqy (1 (s, b)) update(s, h,£,s",h') =4 error(s, h) ifh(€) = LV £=null
unitqy (undef)  if £ ¢ dom(h)

Fig. 1. Denotational semantics of program commands, parametric on an outcome algebra A = (A, +,-,0, 1),

-

an allocator function alloc : § X H — W4 (Addr), and a procedure table P: Proc = Cmd X Var.

Borrowing the notation of Incorrectness Logic [O’Hearn 2020], we use ok and er to denote states
in which the program terminated successfully or crashed, respectively. We will also write i, to
refer to one of the above injections, where € € {ok, er}.

Definition 3.8 (Error Monad Transformer). Let (W, bindqy, unitqy) be the monad described in
Definition 3.7 and E be a set of error states. We define a new monad (W« (— + E + 1), bind, unit)
where the monad operations are defined as follows:

unit(s) = unity (1ok(s)) bind(m, f) = bindqy (m, /1(7.{ {:lgsizrw(a) ioftge?“];lioske(s)

3.2 Denotational Semantics

The semantics of commands [~],,. : Cmd — 8 x H — W(St) is defined in Figure 1 and is
parametric on an outcome algebra A = (A, +,+,0,1) and an allocator function alloc € Alloc 4,
described below. The semantics of expressions [—] : Exp — S — Val is omitted, but is defined in
the obvious way. The set of states is St =S X H + S X H + 1, where S = {s : Var U LVar — Val}
are stores (assigning values to both program variables x € Var and logical variables X € LVar) and
H = {h: Addr — Val U {1}} are heaps. In the style of Raad et al. [2020], a heap is both a partial
mapping and also includes L in the codomain, distinguishing between cases with no information
about an address (£ ¢ dom(h)) vs cases where a pointer is explicitly deallocated (h(¢) = L). We
additionally assume that {null} U A C Val, Addr C Val and null ¢ Addr.
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meT always

meoeVy iff mee or mey

mee®y iff Imi,my. m=mi+my and miEFe@ and maEY

me (p)g f a=0andm=0 or Im’. m=a-m’ and mEg

mee:P iff |m|=1 and Vo €supp(m). 3(s,h). o=1ic(s,h) and (s,h) €P

Fig. 2. Semantics of outcome assertions given an outcome algebra (A, +,-,0,1).

Allocators are functions mapping (s, h) to a collection of addresses and values with total mass 1,
and each address ¢ is not in the domain of h. Formally, allocators come from the following set.

Alloc.q = { F:SxH — Wa(Addrx Val) | V(s h). lﬁ({f’v’;)zuﬂppgﬁl& ). ¢ ¢ dom(h) }

A deterministic allocator alloc_det(s,h) = unit(min(Addr \ dom(h)),0) that always picks the
first unused address is valid in all OSL instances. Note that while logical variables X € LVar
cannot appear in program expressions e, allocators can depend on them. A global procedure table
P: Proc — Cmd x Var that returns a command and vector of variable names (the arguments) given
a procedure name f € Proc is used to interpret procedure calls. We assume that all procedures used
in programs are defined and pass the correct number of arguments.

The monad operations give semantics to skip and §, while loops are defined as a least fixed
point, and C; + C; is defined as a sum whose meaning depends on the Outcome Algebra. Since the
semiring plus is partial, this sum may be undefined; in Appendix A we discuss simple syntactic
checks to ensure totality. The semantics of assume e weights the branch by the value of ¢, as long
as it is a valid program weight. Boolean expressions evaluate to the semiring 0 (false) or 1 (true).

We define two operations before giving the semantics of atomic actions: error(s, h) constructs
an error state and update(s, h, £, s, h’) returns (s’, h’) if the address ¢ is allocated in A, it returns an
error if £ is deallocated, and returns undef if £ ¢ dom(h). Assignment is defined in the usual way
by updating the program store; memory allocation uses alloc to obtain a fresh address and initial
value (or collection thereof); deallocation, reads, and writes are implemented using update and
errors use error. Procedure names are looked up in P to obtain C and X before running C on a store
updated by setting X to have the values of the inputs €. We will additionally occasionally use the

Kleisli extension of the semantics, which is defined as [[C]]Lloc(m) = bind(m, [C]1,c)-

4 OUTCOME SEPARATION LOGIC

We now proceed to formalize Outcome Separation Logic (OSL) and the frame rule. First, we define
an assertion logic for the pre- and postconditions of outcome triples. These assertions are based on
the outcome assertions of Zilberstein et al. [2023], using SL assertions as basic predicates.

Outcome Assertions. The syntax for OSL assertions is below and the semantics is in Figure 2. Both
are parametric on an Outcome Algebra (A, +,-,0,1).

p:=TloVy|leady|(pa|e:P (a € A e € {ok er}, P € 25H)

Outcome assertions include familiar constructs such as T and disjunctions. The outcome conjunction
@ @ ¥ splits m into two pieces m; £ ¢ and m, F ¢ summing to m. Weighting (¢), guarantees that if
m E @, thena-m E (¢),. Combining these, we also define probabilistic choice: 9@, 9 £ (¢),® (¥)1-p,
meaning that ¢ occurs with probability p and ¢ occurs with probability 1 — p.

Finally, basic assertions (ok : P) and (er : Q) require that |m| = 1—ensuring that the set of
outcomes is nonempty in the (non)deterministic cases (Definitions 3.4 and 3.5) or that the assertion
occurs with probability 1 (Definition 3.6)—and that all states in supp(m) terminated successfully and
satisfy P or crashed and satisfy Q, respectively, where P, Q € 25*™ are semantic heap assertions.
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These heap assertions are defined as in standard separation logic, e.g., emp = {(5,0) | s € S)},
PQ 2 {(shiWhy) | (5,hy) €P,(5,hy) € Q} and e > e = {(s, {[ex] (5) > [e2] (5)}) | s € S},
We were motivated to pick this particular set of outcome assertions in light of our goal to define
symbolic execution algorithms in the style of Calcagno et al. [2009], which compute procedure
summaries of the form {P} f(€) {O; V-V Q,} and the disjunctive post indicates a series of
possible outcomes. In our case, we exchange those disjunctions for outcome conjunctions in the
cases where the outcomes arise due to computational effects. We include T in order to drop
outcomes using the assertion ¢ @ T (as discussed in Section 2). Finally, we include disjunctions to
express joins of outcomes that occur due to logical choice, and also to express partial correctness;
while € : P guarantees reachability, (e : P) V (T)p also permits nontermination (no outcomes).

OSL Triples. The semantics of OSL triples requires that the specification holds when the program is
run using any allocator, ensuring that the postcondition cannot say anything specific about which
addresses were obtained, as those addresses may change if the program is executed in a larger heap.

Definition 4.1 (Outcome Separation Logic Triples). For any outcome algebra A = (A, +,-,0, 1):
E (o) C (¥) iff Vm € Wg(St),alloc € Allocq. meg = [[C]]Z”oc(m) Ey

The inference rules for OSL carry over from standard Outcome Logic [Zilberstein et al. 2023, Fig. 4],
along with the small axioms of separation logic [O’Hearn et al. 2001]. It is also fairly straightforward
to derive the rules from our symbolic execution algorithm (Figure 5). Instead of repeating the rules
here, we discuss the new local reasoning principle that OSL supports, namely the frame rule.

4.1 The Frame Rule

We now build the necessary foundations to introduce and prove the soundness of the frame rule.
First, we define a new separating conjunction as a transformation on outcome assertions, using
the symbol @ to distinguish it from the usual separating conjunction * on symbolic heaps; @ is a
binary operation taking an outcome assertion and an SL assertion (rather than two SL assertions
like ). The operation is defined below, where >« := @ | V.

TOF2T (¢p=y)@F=(p@®F) =< (y®F) (9)s®F=(9p®F), (e€:P)®F=¢e:PxF

So, ® has no effect on T, it distributes over V, @, and (—),, and for basic assertions € : P, we simply
join P x F with the regular separating conjunction. We can now express the frame rule.

(p)C Yy  mod(C)Nfv(F) =0
(p®F)C(y®F)

RAME

This rule resembles the frame rule of other separation logics, with the same side condition that F
cannot mention any modified program variables. However, as we described in Section 2.2, OSL’s
expressivity goes beyond that of existing separation logics, meaning that this frame rule can be used
for both may and must properties in nondeterministic programs, as well as quantitative properties
in probabilistic programs. Further, all of these capabilities stem from a single soundness proof.

The key to the proof is the frame property (Lemma C.7), which roughly states that for any
(s, h) € S x H, allocator alloc, and A’ such that (s, h’) £ F, we can construct a new allocator alloc’
such that adding h’ to each end state of [C] ;. (s, h) gives us [C],0c (s, h W h’) (modulo the undef
states), guaranteeing that if [C], . (s, h) E ¢, then [C] ;. (s,h W h’) £ ¥ ® F. We formalize this
idea in the remainder of the section. It relies on lifted relations, defined below, which describe the
relation between two weighted collections in terms of a relation on individual states.
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Definition 4.2 (Relation Liftings). Given a relation R C X X Y, we define a lifting of R on weighting
functions R € Wg(X) X Wx(Y) as follows:

R= { (my, my) ‘ dm e Wx(R). my = Ax.z m(x,y) and my= Ay.z m(x,y) }
yesupp(mz) xesupp(m;)

Semantics of the Outcome Separating Conjunction. We now prove semantic properties about
@ that allow us to relate program configurations satisfying ¢ to ones that satisfy ¢ ® F. First, we
need to relate states satisfying P to states satisfying P * F.

frame(F) = { (Le(s,h),ie(s,hWR)) | 1c(s,h) € St, (s,h') € F} U {(undef, undef)}

Any state 1.(s, h) is related to all states 1(s, h & h’) such that (s, h") € F, which guarantees that if
(s,h) € P, then (s,h W h’) € P * F. Undefined states are only related to themselves. Now, we can
express the semantics of @ by lifting this relation.

LEMMA 4.3. Ifm E ¢ and (m,m’) € frame(F), thenm’ £ ¢ ® F

It is tempting to say that the converse should also hold, but that is not quite right. We took
T @ F to be equal to T, therefore if m £ T @ F, then we cannot guarantee that all the states in m
contain information about F. We therefore characterize the semantics only for the states that are
not covered by T, leaving the other states unconstrained.

LEMMA 4.4. Ifm £ @ ®F, then there exist my, m{, and my such that (m;, m;) € frame(F), m = m{+my
and my + my, £ ¢ for any m;, such that |mj| < |my|.

In the lemma above, m] represents the nontrivial portion of m and m, is the portion of m that is
covered by T. As such, m] must be the result of framing F into some m;. Since m, is covered by T,
we can replace it with anything smaller than m,—T can absorb at least |m;| worth of mass. These
two lemmas provide a semantic basis to reason about what it means for ¢ @ F to hold relative to ¢.

Remark 1 (Asymmetry of the Separating Conjunction). One could imagine a symmetric definition
of ®, defined semantically as follows: m £ ¢ ® ¥ iff there exist m; F ¢ and m; £ ¢, such that
m; and m; are obtained by marginalizing m. More precisely, m; (i (s, b)) is equal to the sum of
m(ic(s,h W h’")) over all b’ such that i.(s,h") € supp(m;) (and a similar formula holds for m;).

This gives expected properties, for example (ok : x - 1%y > 2) ® (ok : x — 3%y +— 4) implies
((ok: x> 1) ® (ok : x — 3)) ® ((ok : y — 2) @ (ok : y > 4)). The problem with this approach
is that it is incompatible with the frame rule. For a simple counterexample, consider the triple
(ok : x ) [x] « 1 (er: x ¥>), using the frame rule with (ok : y > 2) gives us the precondition
(ok : x ¥ * y > 2), but the postcondition is false since there is no way to combine an er assertion
with an ok one. Other problems occur when some of the program paths diverge.

So, the asymmetric definition of ® is the one we want, as the spirit of the frame rule is to run a
computation in a larger heap—adding pointers, not outcomes. That is not to say that the symmetric
@ is useless. In fact, it could be used in a concurrent variant of Outcome Logic to divide resources
among two parallel branches in the style of Concurrent Separation Logic [O'Hearn 2004].

Replacement of Unsafe States. Undefined states arise from dereferencing pointers not in the
domain of the heap. Those pointers may be in the domain of a larger heap, so previously undefined
outcomes can become defined after framing in more pointers. The soundness of the frame rule
depends on this not affecting the truth of the postcondition.

Whereas standard separation logic is fault avoiding—it requires that all states satisfying the
precondition will not encounter unknown pointers—we omit this requirement in OSL in order to
efficiently reason about incorrectness by only exploring a subset of the program paths. For example,
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in the triple (ok : x ) free(x) + C ((er : x ) @ T), the fact that the left path leads to a memory
error is enough to conclude that the program is incorrect; exploring the right path would be wasted
effort. However, the right path may use other pointers not mentioned in the precondition, meaning
that executing C will lead to undef. This is fine, since the assertion T covers undefined states.
However, if we use the frame rule to add information about more pointers to the precondition,
the result may no longer be undef. This is still valid—any outcome from running C trivially satisfies
T. To formalize this, we use Rep C St X (St U {4}), which relates undef to any state o € St
or 4 (representing nontermination)®. All other states (ok and er) are related only to themselves.
In addition, since § is not a state, we define an operation prune(m) to remove it. The formal
definitions of both Rep and prune are given in Appendix C.2. The replacement lemma guarantees
that undefined states can be replaced by anything without affecting the validity of an assertion.

LEMMA 4.5 (REPLACEMENT). Ifm E ¢ and (m,m’) € Rep, then prune(m’) & ¢

Soundness. We now have all the ingredients needed to prove the soundness of the frame rule.
THEOREM 4.6 (THE FRAME RULE). Ifk (@) C (¥) and mod(C) Nfv(F) = 0, thenk (¢ ® F) C () & F).

We briefly sketch the proof here, the full version is in Appendix C.3. Suppose m £ ¢ @ F and take any
alloc € Alloc. We now enumerate all the defined states of m and (using Lemma 4.4) we know that
each state has the form o, = 1., (sp, hy, W h),) where (s,, b)) € F. We pick a fresh logical variable X
and construct m’ by modifying each o, € supp(m) to be i, (s,[X + n], hy,). That is, we augment
the variable store such that X = n and remove the k), portion of the heap. Note that m’ k ¢.

We construct a new allocator as follows: alloc’(s, h) = alloc(s[X > s5x)(X)],h @ h;(x)). So,
alloc’(s, h) uses the value s(X) = n to select the appropriate h/, to add to h, guaranteeing that
[Claitoe (sns hn) allocates the same addresses as [C] 1. (Sns hn @ hY,) for all n. So, [C] Z[Ioc( m) is related
to [C]} Am’) via the two relations described previously. By the premise £ (¢) C (i), we know

allo
that [C]'  (m’) £ ¢, and by Lemmas 4.3 and 4.5, we conclude that [C]', (m) k¢ ® F.

alloc

alloc

;
alloc
We have devised a frame rule for Outcome Separation Logic, which supports a rich variety of
computational effects and properties about those effects. More concretely, OSL can be used to reason

about both correctness and incorrectness across nondeterministic and probabilistic programs. In the
next sections, we will build on this result to create compositional symbolic execution algorithms.

5 SYMBOLIC EXECUTION

With a sound frame rule, we are now ready to design symbolic execution algorithms based on OSL.
The core algorithm is similar to Abductor and Infer [Calcagno et al. 2009, 2015], but adapted to better
handle program choices arising from computational effects. We also show how minor modifications
to this algorithm make it suitable for other use cases such as bug-finding and partial correctness.
First, we introduce a restricted assertion syntax to make OSL compatible with bi-abduction, then
we define tri-abduction (Section 5.1) and the main algorithm (Section 5.2).

Symbolic Heaps. In the remainder of the paper, we will work with a subset of SL assertions known
as symbolic heaps. Although they have limited expressivity—particularly for pure assertions—
implications of symbolic heaps are decidable [Berdine et al. 2005a], which is necessary for bi-
abductive analysis algorithms. These same symbolic heaps are used by Calcagno et al. [2009, 2011].

3Previously undefined states may diverge after adding more pointers, e.g., running free(x) § while true do skip in an empty
heap leads to undef whereas it will not terminate if x is allocated.
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The syntax is shown below and the semantics is standard as defined by Berdine et al. [2005b, §2].

P=3X.A (Symbolic Heaps) Ma=true |1 Allp | e =€z | e1 £ ez (Pure Assertions)
A ==TIAY (Quantifier-Free) Yu=true|emp |21 %3y | e > ez | Is(er,e2) (Spatial Assertions)

A symbolic heap P consists of existentially quantified logical variables, along with a pure part
IT and a spatial part X. Pure assertions are conjunctions of equalities and inequalities, whereas
spatial assertions are heap assertions joined by separating conjunctions. The separating conjunction
requires that the heap can be split into disjoint components to satisfy the two assertions separately.

(S, h) E X% 2o iff 3]’[1, hz. h= hl (V] hz and (S, hl) E > and (S, hz) E 2o

The points-to predicate e; — e, specifies a singleton heap in which the address e; points to the
value e;. Negative heap assertions e ¥ are syntactic sugar for e +— L. These assertions were
introduced in Incorrectness Separation Logic to prove that a program crashes when dereferencing
invalidated memory [Raad et al. 2020]. Finally, list segments Is(e;, e;) are inductive predicates
stating that a sequence of pointers starts with e; and ends with e;. Formally, it is the least solution
of Is(er, e2) © (e = e; Aemp) V (IX.e; — X *Is(X, e5)). We also overload * and A as follows:

AXTOAS) « (AYINAS) 2 AXY.(TAT)A(S*3)  PAIL2 Px (I Aemp)

5.1 Tri-Abduction

We now address the matter of composing paths in programs whose execution branches due to
nondeterminism or random sampling. When symbolically executing such programs, we must unify
the preconditions for the two branches. For example, the following program chooses to execute
[x] « 1or [y] « 2, so we need a precondition that mentions both x and y, and we need to know
what leftover resources to add to the two resulting outcomes.

v {ok:x > X) [x] «1 (ok:x+> 1)
(ok : ?) + ((ok:xH—>1%?) & (ok:yr2x%7?))
~(ok:y—Y) [y] <2 (ok:y>2)

Tri-abduction provides us the power to reconcile the preconditions of the two program branches.
Given P; and P, the goal is to find the anti-frame M and two leftover frames F; and F, that make
Py F; 4 M £ P, = F, hold. Using this, we can compose program branches as follows:

(P1) C1 {Q1) Pi«FidAaMEeP,+F, (P2) Cy (Q2)
(M) Cy +Cy ((Q1 % F) © (Q2 * F2))

Tri-abduction would have also been useful in Abductor, which is unable to analyze the program
above despite supporting nondeterminism. Abductor operates in two passes; first finding candidate
preconditions for each trace, and then re-evaluating the program with each candidate in hopes that
one is valid for the entire program [Calcagno et al. 2009]. Since the program above uses disjoint
resources in the two branches, no candidate is valid for all traces. Using tri-abduction, we infer
more summaries and do so in a single pass. While a single-pass bi-abduction algorithm has more
recently been proposed [Sextl et al. 2023], it still cannot handle the case in the following remark.

TRrI-ABDUCTIVE COMPOSITION

Remark 2 (Solving Tri-Abduction using Bi-Adbuction). Our initial approach to tri-abduction was to
simply use bi-abduction: given P; and P;, bi-abduction can give us M and F such that P; * M £ P, = F.
Using P; * M as the anti-frame, P; * M 4 (P; * M) £ P, % F is a tri-abduction solution.

However, this approach is inherently asymmetric, with the left branch being favored. While
it would be possible to also bi-abduce in the opposite direction (P, * ? £ Py % ?) for symmetry,
this still precludes valid solutions, e.g., there is no bi-abduction solution for X — Y *Is(Y, Z) and
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I AT ¥ false I AT A ¥ false

Base-Emp BAse-TRUE-L

M Aemp< [IAI Aemp]>II" Aemp OAtrue< [TATTAZ ]I AT

‘ Quantifier Elimination ‘

A<[M]eA Xn(fW(A)\T) =0 Yn(fv(A)\X) =0

= S = = ExisTs
3IX.A < [3XY.M] > 3V.A
Resource Matching
Axls(es,ez) < [M] > A ANes=e3< [M]|>N ANey=e3
Ls-StArRT-L Marcu
Axls(e,es) 9 [M*ep > e3] >N xep — e3 Axe > ey<d[Mxe e >N xep > e3
Axls(es, ez) < [M] > A
(e3,€2) < [M] T
Axls(ep, ex) < [Mxls(ep, e3)] > A = Is(e, e3)
Resource Adding
A< [M]>TU A (2 = true) II' AY % B(ey, ey) ¥ false ANei=e;<[M]>AN ANep=ey
p S MISSING-L S Emp-Ls-L
A+ B(ey,ez) < [M = B(eg,ez)] >11" A (3 = true) Axls(er,ex) < [M] > A

Fig. 3. Selected abduction proof rules. Similarly to Calcagno et al. [2009], B(e1, e2) represents either Is(eq, e2)
or e1 > ez. Rules ending in -L have symmetric versions not shown here; see Figure 6 for the full proof system.

Is(X,Y) %Y + Z (in either direction), whereas tri-abduction finds the anti-frame X — Y =« Y > Z,
Tri-abduction is a fundamentally different operation that is precisely designed for branching.

Similar to [Calcagno et al. 2011, Algorithm 3], tri-abduction is done in two stages. First, we
describe the abduction stage, in which only the anti-frame M is inferred. Next, we describe how
abduction is used as a subroutine to tri-abduce all three parameters M, F;, and F,.

Abduction. The abductive inference step abduce-par(P, Q) is performed as a proof search—similar
to Calcagno et al. [2011, Algorithm 1]—using the rules in Figure 3 to infer judgements of the form
P < [M] > Q, indicating that M £ P and M k£ Q. As such, P and Q are the inputs to the algorithm
and M is the output. We describe the algorithm briefly, the full definition is in Appendix D.

The inference rules are applied in the order in which they are shown, with the rules at the top
being preferred over the rules lower down. The inference rules ending with -L have symmetric
versions that can also be applied (the full set of rules is shown in Figure 6).

The premise of each inference rule becomes a recursive call, finding a solution to a smaller
abduction query. Some of the rules have side conditions of the form of R ¥ false, which is checked
using the proof system of Berdine et al. [2005b, §4]. Given that each recursive call describes a
progressively smaller symbolic heap, the algorithm either eventually reaches a case with no explicit
resources (emp or true), in which a base rule applies, or gets stuck and returns no solutions. The
inference rules are described below.

Base Rules. The first step is to attempt to apply a base rule to terminate the algorithm. BASe-Emp
applies when both branches describe empty heaps, as long as the pure assertions in each branch
do not conflict. In BAse-TRUE-L, we match against the case wherein one of the branches has an
arbitrary spatial assertion X’ and the other contains the spatial assertion true, indicating that it can
absorb more resources not explicitly mentioned, so we are able to move X’ into the anti-frame.

Quantifier Elimination. The next step is to strip existentials from the inputs P and Q and add
them back to the anti-frame M obtained from the recursive call. This is achieved using the Ex1sTs
rule in Figure 3. In bi-abduction, existentials are not stripped from the assertion to the right of the
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entailment—doing so prevents the algorithm from finding solutions in some cases. For example,
Is(e,e’)*? E AX.e — X *? has a solution (e # €’), but it does not have a solution with the existential
removed since nothing can be added to Is(e, e”) to force e to point to a specific X. Tri-abduction
produces an anti-frame M from scratch, so we are not operating under such constraints, allowing
us to strip existentials at an early step in order to simplify further analysis.

It is important to note that in the Ex1sTs rule, quantified variables in one assertion cannot overlap
with the free variables of the other. This ensures that no free variables in P or Q end up existentially
quantified in the anti-frame M. Without the side condition, the rule is unsound; suppose we want to
tri-abduce 3X.X =Y with X = 1, then Ex1sTs gives us the anti-frame 3X.X = Y A X = 1, which is
too weak since 3X.X =1 ¥ X = 1. In practice, our symbolic execution algorithm always generates
fresh logical variables, so we will not have collisions with our usage of the Ex1sTs rule.

Resource Matching. If a base rule does not apply, then we attempt to match resources from both
branches, and then call the algorithm recursively on smaller symbolic heaps with some resources
moved into the returned anti-frame. Ls-START-L applies when both branches contain the same
resource ej; however, one includes e; as the head of a list segment and the other refers to e; using a
points-to predicate. Here, the points-to predicate must be the head of the list, so we move it into M
and recurse on the tail of the list. The MaTcH rule applies when both branches use e; in a points-to
predicate, therefore the values pointed to must be equal too. Ls-END-L applies when both branches
have list segments starting at the same address, so one segment must be a prefix of the other.

As in Calcagno et al. [2009], we do not consider cases where pointers are aliased. For example,
if the two branches are x + 1 and y + 1, then it is possible that x = y. Precluding this solution
helps limit the number of options we consider. Calcagno et al. [2009, Example 3] remark that this
loss of precision is not detrimental in practice.

Resource Adding. Adding resources that are only present on one side is the last resort, since it
involves checking a potentially expensive side condition of the form IT A X = B(ey, e;) ¥ false. The
MissiNG-L rule handles the case wherein one branch refers to resources not present in the other. This
is different from the BAse-TRUE-L rule, since it handles cases where both branches refer to resources
not explicitly present in the other. For example, M1sSING-L can solve x — Xxtrue<[?]>y — Yxtrue
even though the BAse-TRUE rules do not apply. If one side of the judgement contains a list segment,
but the other side does not contain the spatial assertion true, then there is a possible solution where
the list segment is empty. Emp-Ls-L handles such cases by forcing the list segment to be empty.

As we mentioned at the beginning of the section, the tri-abduction algorithm follows a similar
structure to that of bi-abduction [Calcagno et al. 2011, Algorithm 3].

triab(P, Q) = {(M, F1, F,) | M € abduce-par(P * true, Q = true), M+ P* F;, M+ Q * F,}

We first abduce a set of anti-frames using Algorithm 1 such that M £ P = true and M £ Q = true
for each M. Adding the spatial assertion true absorbs extra resources; if P and Q have different
memory footprints, then there is no M such that P < [M] > Q, but adding true to both sides of
the entailments allows M to refer to resources present in only one branch. Next, we use the frame
inference procedure from Berdine et al. [2005b, §5] to find F; and F, such that M £ P % F; and
M E Q = F,. Applying frame inference is necessary because M may mention resources present in
P, but not Q (and vice versa). The set of solutions is valid according to the following correctness
result, which follows from the soundness of the proof system in Berdine et al. [2005b, §5].

THEOREM 5.1 (TRI-ABDUCTION). If (M, Fy, F,) € triab(P, Q), then M E P+ F; and M E Q * F,
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seq( T .5%) ={(emp, T)} biab’(3Z.A, Q, ¥, %) =
seq(p1 > 92, 5,%) = {(M', (y © 3ZRFIX/ZD) [6/7])
{(M, ;> y3) |(M1,91) € seq(¢1,S,%) | (M, F) € biab(A, Q)
(M2, ¥2) € seq(¢z, S, %) (&Y, M’) = rename(A, M, Q, {y/}, X, %)}
(M, ¥}, ) € triab’ (My, My, Y1, Y2, %) } triab’ (Py, Py, 1, Un, %) =
seq( ((P)a ’S!"j) = {(M’ (¢)a) | (M’(//) EseQ((P’S»x)} {(M,, (1//1@3)?{}?1[%/)_5])[8/2],
seq( ok:P,5,%) = (2 ® IR [X/5]) [€/7])
{(M,¢/) | (Q,¥) €S, (M,y)') € biab’(P,Q, ¢, %)} | (M. Fi, F2) € triab(Py, Py)
seq( er:Q ,S,%) = {(emp,er: Q)} (8,Y, M’) = rename(emp, M, {1, ¢}, 0,%) }

Fig. 4. Sequencing procedure. The vector X is assumed to be fresh and the same size as X, and > € {V, @,}.

5.2 Symbolic Execution Algorithm

All variants of the algorithm are presented as symbolic executions, which compute an abstract
semantics for a program—denoted [[C]]ﬂ (T)—represented as a set of pairs of pre- and postconditions.
The precondition is a single symbolic heap P, whereas the postcondition is an outcome assertion ¢.
The parameter T is a lookup table that gets updated with summaries for procedures as the analysis
moves through the codebase. Intuitively, we think about specifications as starting in a single state
and producing a collection of outcomes, as the execution may branch due to computational choices.
Abductor operates in a similar fashion, but the postcondition is a disjunction rather than an outcome
conjunction. The intended semantics is captured by the following soundness result.

THEOREM 5.2 (SyMBoLIC EXECUTION SOUNDNESS). If (P, ¢) € [[C]]ﬁ (T), thenk {(ok : P) C {¢)

The strategy for the analysis is to accumulate a set of outcomes while moving forward through
the program. At each step, every outcome in the current summary must be sequenced with a
summary for the next command using bi-abduction. This is achieved using the seq procedure,
defined in Figure 4, which takes in an outcome assertion ¢, a set of summaries for the next command
C, and ¥, the variables modified by C. It computes a set of missing anti-frames M and postconditions
¥ such that (¢ ® M) C (¢) is a valid specification for C.

Sequencing after T and (er : Q) has no effect, since T carries no information about the current
branch, and (er : Q) means the program has crashed. Sequencing after (¢), simply sequences ¢
and then reapplies the weight. Sequential composition is implemented in the (ok : P) case, where
bi-abduction is used to reconcile the current outcome with each summary for the next command.
The biab” procedure is similar to AbduceAndAdapt from Calcagno et al. [2011, Fig. 4], in which a
renaming step is applied to ensure that the anti-frame M is not phrased in terms of any program
variables, therefore meeting the side condition of the frame rule. The details of renaming and why
it is required for correctness are explained in Appendix E.

Our algorithm differs from Abductor in the cases with multiple program branches. This is where
we use tri-abduction to obtain a precondition that is guaranteed to be valid for all program paths,
allowing us to analyze the program in a single pass (unlike Abductor, which must re-evaluate
the program using each candidate precondition). After sequencing each of the outcomes in the
precondition ¢; and ¢, with the next command, we use triab’ to obtain the single renamed anti-
frame M that is safe for both branches. The soundness property for seq is stated below.

LEMMA 5.3 (SEQ). If (M, ) € seq(¢, S, %), X = mod(C), and e {(ok : P) C (8) forall (P,8) € S, then
E{p@M)C ().

Symbolic Execution Algorithm. The core symbolic execution algorithm, shown in Figure 5, com-
putes a local symbolic semantics which can be augmented using the frame rule to obtain summaries
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cecmd | [c]* (D)
skip {(emp, ok : emp) }
C15C {(P+My) | (P.g) € [Ci]F (T), (M,y) € seq(p, [C2]* (T), mod(C2))}
i+ G (Mg @) | (M, ) € [C]* (T), (M, 92) € [C]* (T),
(M, 1, 97) € triab’ (My, M, Y1, 2, mod(Cy, C2)) }

assume b {(b Aemp,ok : b Aemp), (=b Aemp, (T)g)}
assume a {(emp, (ok : emp), }

Ifp S.{(=b A emp,ok : =b A emp) } U
while b do C {(My =Mz A b, Y)

| (M1, @) € seq(ok: b Aemp, [[C]]'i (T), mod(C)), (M2, ) € seq(¢,S,mod(C))}

¢ € Act [[c]]ﬁ (7)

x:=e {(x =X Aemp,ok: x =e[X/x] Aemp)}

x := alloc() {(x=X Aemp,ok: Y. x> Y)}

free(e) {(e > X,ok:ep), (ev,er:e), (empAe=nuller:empAe=null)}

[er] <« ez {(e1 — X,0k:e; > e2), (e1 >, er:eg o), (emp A e; =null,er : emp A eg = null) }

x « [e] {(x=XnAe Y,ok:x=YAe[X/x] — Y),(ev,er:es),(empAe=nuller:empAe=null) }
error() {(emp, er :fmp)} R

£@) ((PAF=X,0) | (P.g) €seqlok: % = E[R/%] Aemp, T(f(3)), mod (/) })}

Fig. 5. Symbolic execution of commands and actions, all logical variables X, Y € LVar are assumed to be
fresh, a € A is a program weight, and b == e1 = ez | e1 # ez is a simple test.

in larger heaps. For example, the semantics for skip is simply the triple (ok : emp) skip (ok : emp),
but this implies that running the program in any heap will yield that same heap in the end. Execut-
ing C; § C, uses seq; summaries for C; are sequenced with all the summaries for C,. Choices C; +C,
are analyzed by computing summaries for each path and reconciling them with tri-abduction.

We split assume e into two cases: if e is a simple test (equality or inequality), then we generate two
specifications with the precondition stating that e is true and the postcondition being unchanged, or
e being false and the outcome being eliminated. This is similar to the “assume-as-assert” behavior of
Abductor and produces precise specifications without a priori knowledge of the logical conditions
that will occur. If e is a weight literal a, when we simply weight the current outcome by it. All other
expressions are not supported due to limitations of the bi-abduction solver [Calcagno et al. 2009].
Similarly, while loops use a least fixed point to unroll the loop, and produce one summary for each
possible number of iterations. We will see more options for analyzing loops later on.

The abstract semantics of atomic actions mostly follow the small axioms of O’Hearn et al.
[2001], with failure cases inspired by Incorrectness Separation Logic [Raad et al. 2020]. Each
memory operation has three specifications: one in which the pointer is allocated and the operation
accordingly succeeds, and two failure cases where the pointer is not allocated or null. Procedure

calls rely on pre-computed summaries in a lookup table T, which is a parameter to [[Cﬂﬁ.

Simulating Pulse. As recounted by O’'Hearn [2020]; Raad et al. [2020]; Le et al. [2022], the
scalability of IL-based analyses stems from their ability to drop disjuncts. Analyzers such as Abductor
accumulate a disjunction of possible end states at each program point. For incorrectness, it is not
necessary to remember all of these possible states; any of them leading to an error constitutes a
bug. Since IL allows strengthening of postconditions, those disjuncts can be soundly dropped.

We take a slightly different view, which nonetheless enables us to drop paths in the same way.
We differentiate between program choices that result from logical conditions (i.e., if and while
statements) vs computational effects (i.e., nondeterministic or probabilistic choice). In the former
cases, we generate multiple summaries in order to precisely keep track of which initial states
will result in which outcomes. In the latter case, we use an outcome conjunction rather than a
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disjunction to join the outcomes. While we cannot drop outcomes per se, we can replace them by
T, ensuring that they will not be explored any further according to the definition of seq (Figure 4).
This can be implemented by altering the definition of choice as follows.

[Cr+ G (T) = {(P.p @ T) | (Pg) € [C]F (DY U{(P,poT) | (Po) € [C]* ()}

Given this modification, the algorithm remains sound with respect to the same semantics (i.e.,
Theorem 5.2), but it no longer fits with the spirit of correctness reasoning, since some of the program
outcomes are left unspecified. We will see in Section 6.1 how it can be used for efficient bug-finding.

Now, we have a situation where each element of [[C]]ﬁ (T) stands alone as a sound summary for
the program C, and represents a particular trace. This corresponds to taking a particular logical
branch in if statements, unfolding while loops for a particular number of iterations, and particular
(nondeterministic or probabilistic) choices. So, eliminating elements from the set will only preclude
possible summaries without affecting the correctness of the existing ones, meaning that we can
drop paths by, e.g., unrolling loops for a certain number of iterations and only taking one path
when encountering a +. Le et al. [2022] refer to this as depth and width of the analysis, respectively.

Loop invariants and partial correctness. An alternative to bounded unrolling for (non)deterministic
programs is to use loop invariants. We can alter the rule for while loops to the following.

[while e do C]* (T) = {(L, (ok : T A —e) V (T)o) | (I Ae,ok:1) e [C]* (T)}

The truth of the invariant I is preserved by the loop body, therefore it must remain true if the loop
exits. The possibility of nontermination is expressed by the disjunction with (T)g.

Finding loop invariants is generally undecidable, however techniques from abstract interpretation
[Cousot and Cousot 1977] can be used to find invariants by framing the problem as a fixed point
computation over a finite domain, thereby guaranteeing convergence. This is the approach taken
in Abductor [Calcagno et al. 2011], which uses the same symbolic heaps, but without outcome
conjunctions. In nondeterministic programs, we can convert outcome conjunctions into disjunctions
since (ok : P) ® (ok : Q) = (ok : P v Q) and therefore we can use the same technique.

Nondeterministic Allocation. Memory bugs can arise in C from failing to check whether the
address returned by malloc is non-null. This is often modeled using nondeterminism, wherein
the semantics of malloc returns either a valid pointer or null, nondeterministically. Our language
is generic over effects, so we do not have a nondeterministic malloc operation, but we can add
x := malloc() as syntactic sugar for (x := alloc()) + (x := null), and derive the following semantics:

[x = malloc()]}ti (T) = {(x =X Aemp, (ok : x = null A emp) & (ok : IY.x > Y))}

Reusing Summaries. Though partial correctness specifications are incompatible with bug-finding,
and under-approximate specifications are incompatible with verification, there is still overlap in
summaries that can be used for both. Many procedures in a given codebase do not include loops
or branching, so their summaries are equally valid for both correctness and incorrectness, and
also in programs with different interpretations of choice. In other cases, when a procedure does
have multiple outcomes, it is easy to convert a correctness specification into several individual
incorrectness ones, since the following implication is sound. We will see this in action in Section 6.1.

(ok : P) C (Y ® 1n) = (ok:PYC(Yyy®T) and (ok:P)C (Yo ® T)
6 CASE STUDIES

We will now demonstrate how the symbolic execution algorithms work by examining two case
studies, which show the applicability in both nondeterministic and probabilistic execution models.
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6.1 Nondeterministic Vector Reallocation

Our first case study involves a common error in C++ when using the std: :vector library in
which a call to push_back may reallocate the vector’s underlying memory buffer, invalidating any
pointers to that cell that existed before the call. This was also used as a motivating example for
Incorrectness Separation Logic [Raad et al. 2020]. Following their lead, we model the vector as a
single pointer and we treat reallocation as nondeterministic. The program is shown below.

push_back(v) :

L v [0l
push_back(v)s free(y)s + skip
(] — 1 y = alloc()?
[0] <y

Before we analyze the main procedure, we must store [[push_bac:k(v)]]ﬁ (T) in the procedure table.
Since push_back is a common library function, it makes sense to compute summaries describing
all the outcomes, which will be reusable for both correctness and incorrectness analyses. The first
step is to analyze the two nondeterministic branches, which are both simple sequential programs.

y := alloc()§ (v h, er:oth

Ilye[v]s ‘ﬂﬂ {(vr—)A*A»—)—,ok:EIB.v»—)B*Br—)—*A»/—))
[o] <y

e | (D = o G 3} [skipl(T) = {(emp. ok : emp)}

Now, we can compose the two program branches using tri-abduction. Choosing the first summary
for the first branch, we get the following tri-abduction solution.

v AxA —x[empld v AxA> - Fempx (o> Ax A —]

So, by framing emp into the first branch and v — A * A — — into the second branch, we get a
summary for push_back as a whole. This can similarly be done for the other summaries of the first
branch, yielding the lookup table below.
(ok:0v—> Ax A — ) push_back(v) ((ok:3B.or—> BxBi> —x A ) & (ok:v— AxAr —))
T= (ok:v— Ax A ) push_back(v) ((er:v— Ax A )@ (ok:o> AxAo )

(ok: o> ) push_back(v) ((er: v ) @ (ok:ovb )
The first summary tells us that push_back may reallocate the underlying buffer, in which case
the original pointer A will become deallocated. The next two summaries describe ways in which
push_back itself can fail. We will focus on using the first summary to show how main will fail if
the buffer gets reallocated. We analyze main in an under-approximate fashion in order to look for
bugs. The first step is to compute summaries for the first two commands of main. The load on the
first line has three summaries according to Figure 5, we select the first one in which v is allocated.

(ok:x=XAv Y)yx e [0] ok:x=Y Avi> Y) € [x — [0]]* (T)

The procedure call on the second line requires us to look up summaries in T. We select the first
one, but we will use an under-approximate version of it so as to explore only one of the paths

(ok:v > Ax A —)push_back(v) ((ok : JBo+> B« B> —« A) @ T)

Now, we use seq to sequentially compose these summaries, which involves bi-abducing the post-
condition of x « [v] with the precondition of push_back(v).

x=YAo— Y*[A=Ysxx—> -]Fo—> Ax A —x [emp]

So, after renaming, we get the following summary for the composed program:
(ok: v x % x> —) x « [v] § push_back(v) ((ok:3B.v+> Bx B> —xxt) D T)
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Now, observe that the postcondition above is only compatible with one of the summaries in Figure 5
for the last line of the program. Since x is deallocated in the only specified outcome, the write into
x must fail. Using bi-abduction again, we can construct the following description of the error.

(ok: 0 x % x> —)x « [v] § push_back(v) §[x] < 1((er: Bo+> Bx B> —xx /) d T)

6.2 Consensus in Distributed Computing

In this case study, we use OSL to lower bound reliability rates of a distributed system. In the basic
consensus algorithm, shown below, each of three processes broadcasts a value v; by storing it in a
pointer p;, and consensus is reached if any two of these processes broadcasted the same value. To
model unreliability of the network, the broadcast procedure fails with probability 1%. We would
like to know how likely we are to reach consensus, given that two of the processes agree.

main() : decide(p1, p2, p3,0) :
p1 = alloc() § broadcast (o1, py)3 x1— [p1] 5% [pal 3 %3 — [psls
p2 = alloc() § broadcast(vg, p2)$ if x1 = x2 then
p3 = alloc() § broadcast(vs, p3)3 [0] & x1
v := alloc()s else if x; = x3 then
decide(p1, p2, p3,0) [0] & x1
else if x9 = x3 then
broadcast(v, p) : [0] « x2
([p] < v) ®o.99 error() else skip

We begin by examining the summary table. The broadcast procedure has two outcomes corre-
sponding to whether or not the communication went through. Though there are many summaries
for decide, we show only the one in which the values sent on p; and p; are equal.

(ok: p > —A0v=V) broadcast(v,p) ((ok:p >V Av=V) @g (er:prs—Av=V))
T =4 (k:pi=>Vispy Vaxps i Vaxo — AV =V,) decide(py, p2, p3,v) (ok: o Vix- )

We again use the single-path algorithm to analyze main, but this time we are interested only in the
successfully terminating cases. We get the following summaries for each of the first three lines.

(ok : v; = V;) p; := alloc() § broadcast(v;, p;) ((ok :v; = V; A p; — Vi) @g.90 T)

These three summaries can be combined—along with the simplification that (¢ ®, T) @, T implies
¢ ®,.p T—to obtain the following assertion just before the call to decide

(ok:01=ViAvy=VoAo3=VaAp1 > Vi kpot> Voxp3 5 V3) @gggs T

Now, we can bi-abduce the first outcome above with the precondition for decide shown in T. This
sends V; = V; backwards into the precondition, and we get an overall summary for main telling us
that if v; = v;, then the protocol will reach consensus (v — V;) with probability at least 97%.

(ok:01=Vi Aoy =Vo Avg=V3 AV =V5) main() ((ok: o+ Vys---) @gog703 T)

7 RELATED WORK

Separation Logic and the Frame Rule. While many variants of separation logic exist, OSL is
the only one that supports alternative types of choice as well as both may and must properties.
The soundness the frame rule in both partial and total correctness separation logic relies on
nondeterminism and rmust properties [Yang and O’Hearn 2002; Calcagno et al. 2007], so they are
suitable only for correctness in nondeterministic languages. Some work has been done to drop the
nondeterminism requirement, for example Baktiev [2006] proved that the frame rule is sound in
a deterministic language if heap assertions are unaffected by address permutation, however this
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requires languages without address arithmetic. Similarly, Tatsuta et al. [2009] created a deterministic
separation logic, but the frame rule only applies to programs that do not allocate memory.

Incorrectness Separation Logic (ISL) has a frame rule that is compatible with may properties,
but not must properties [Raad et al. 2020]. Unlike OSL, ISL has no restrictions on assertions about
memory allocation; it is possible to prove that a particular address ¢ is returned. If, after applying
the frame rule, ¢ is already in use, then the postcondition of the ISL triple becomes false, making
the triple vacuous (whereas in regular separation logic and OSL, a false precondition makes triples
vacuous). However, whereas ISL has slightly more power to express may properties, ISL cannot
express must (i.e., correctness) properties and is also specialized only to nondeterminism.

Exact Separation Logic (ESL) [Maksimovi¢ et al. 2023] combines the semantics of SL and ISL to
create a logic that is suitable for both correctness and incorrectness, while inheriting the limitations
of both. That is, ESL can only express properties that are both may and must properties, meaning
that it cannot under-approximate by dropping paths or over-approximate using loop invariants.

Higher-order separation logics [Birkedal and Yang 2007; Birkedal et al. 2008] including Iris [Jung
et al. 2015] bake the frame rule into the definition of triples themselves, making the soundness of
the frame rule trivial without any additional assumptions. More precisely, triples {P} C {Q} are
valid iff for any frame F,if 6 £ P = F, then 7 £ Q = F for all 7 € [C] (o). As a tradeoff, frame baking
introduces additional proof obligations whenever constructing a triple (i.e., it must be shown that
every inference rule is frame preserving). We could have used this approach in OSL, but there is no
free lunch; it would have involved moving the inductive cases of Lemma C.7 into Theorem 5.2.

We chose not to do this, as we preferred to keep the proof of the frame rule self contained. The
choice is mostly orthogonal to the power of the logic, and somewhat philosophical: we proved that
programs are local actions whereas the frame baking approach shows that you can only express
local properties about commands. The exception to this is memory allocation, which is not a local
action, so we baked the expressivity limitation into the triple semantics. We felt this was a good
tradeoft, since we baked in a weaker property, which was just strong enough to complete the proof.

Probabilistic Separation Logics. While some work has been done to incorporate probabilistic
reasoning into separation logic, these logics differ from OSL in the scope and applicability of the
frame rule, and have not been shown to be compatible with bi-abduction. Quantitative Separa-
tion Logic [Batz et al. 2019] and its concurrent counterpart [Fesefeldt et al. 2022] use weakest
pre-expectation [Morgan et al. 1996] style predicate transformers to derive expected values in
probabilistic pointer programs. They rely on demonic nondeterminism for allocation—the expected
value is lower bounded over all possible allocated addresses—and the frame rule gives a lower
bound, whereas OSL is used for propositional reasoning, with each outcome having a likelihood.
Polaris [Tassarotti and Harper 2019] incorporates probabilistic reasoning into Iris [Jung et al.
2015] and is also used to bound expected values using refinements inspired by probabilistic relational
Hoare Logic [Barthe et al. 2015]. Polaris is limited to programs that terminate in finitely many steps
and the program logic itself is only used to relate probabilistic programs to each other, whereas the
quantitative reasoning about expected values must be done externally to the program logic.
Probabilistic Separation Logic (PSL) [Barthe et al. 2019] and subsequent works [Bao et al. 2021,
2022; Li et al. 2023] use an alternative model of separation to characterize probabilistic independence
and related probability theoretic properties. Doing so provides a compositional way to reason about
probabilistic programs, though this work is orthogonal to our own as it does not deal with heaps.

Pulse and Incorrectness Separation Logic. As recounted by Raad et al. [2020, §5], Pulse uses
under-approximation in four ways in order to achieve scalability:

(1) Pulse takes advantage of the IL semantics in order to explore only one path at a time when
the program execution branches, and to unroll loops for a bounded number of iterations.



Outcome Separation Logic: Local Reasoning for Correctness and Incorrectness with Computational Effects 23

(2) Pulse elects to not consider cases in which memory is re-allocated.
(3) Pulse uses under-approximate specifications for some library functions.
(4) Pulse’s bi-abductive inference assumes that pointers are not aliased unless explicitly stated.

We have shown how (1) is achieved using OSL in the single path algorithm, (2) and (4) are standard
assumptions in bi-abduction [Calcagno et al. 2009, 2011] (which we also use), and (3) is a corollary to
(1), since the ability to drop paths opens the possibility for under-approximate procedure summaries.

Pulse does not support inductive predicates (e.g., list segments), so it uses a simplified bi-abduction
procedure capable of handling more types of pure assertions. This results in exact bi-abduction
solutions; the inferred M and F satisfy P = M 4k Q = F. As a result, Pulse does not use consequences
to—since it is based on IL—strengthen the postcondition, meaning that the resulting specs can be
interpreted as both ISL and OSL triples, and suggesting that our algorithm accurately models Pulse.

Unified Metatheory with Effects. Our algebraic program semantics is similar to Weighted Pro-
gramming [Batz et al. 2022]. Whereas we use an algebraic interpretation of choice to represent
multiple types of (executable) program semantics, the goal of weighted programming is to specify
mathematical models and find solutions to optimization problems via static analysis. Cirstea [2013,
2014] also used partial semirings to represent properties of program branching in coalgebraic logics.

Delaware et al. [2013a,b] developed 3MT, a unified framework in the Coq proof assistant for
mechanizing metatheoretic proofs—such as type soundness—-about languages with monadic effects.
Our motivations are similar, but with the goal of developing program logics.

Unifying correctness and incorrectness. Exact Separation Logic (ESL) combines the semantics of
SL and ISL to support correctness and incorrectness within a single program logic [Maksimovic¢
et al. 2023]. ESL is implemented in the Gillian static analyzer [Fragoso Santos et al. 2020] and
demonstrates that inductive predicates are compatible with the IL semantics, going beyond Pulse
or Pulse-X. Similarly, Local Completeness Logic (LCL) is based on the semantics of IL, but uses an
over-approximate abstract domain to ensure that the under-approximation is never too far away
from the strongest post so as to preclude recovering a correctness spec too [Bruni et al. 2021, 2023].
Though the goals of these two developments are similar to our own, we take a different approach;
in keeping with the tradition of O’Hearn [2020]; Raad et al. [2020]; Le et al. [2022], we opt to design
separate algorithms for correctness and incorrectness, recognizing that fundamental properties of
bug-finding allow us to trade off a complete view of all program outcomes for increased efficiency.
Still, we are able to provide a unification of the metatheory and share summaries for some procedures.
Crucially, OSL permits dropping paths just like IL, which is not possible in either ESL or LCL.
Hyper Hoare Logic takes a similar approach to OL, in which both correctness and incorrectness
hyper-properties can be proven for a nondeterministic language [Dardinier and Muller 2023].

8 CONCLUSION

Infer—based on separation logic and bi-abduction—is capable of analyzing industrial scale codebases,
substantiating the idea that compositionality translates to real-world scalability [Calcagno et al.
2015]. But the deployment of Infer also surfaced that proving the absence of bugs is somewhat of a
red herring—software has bugs and sound logical theories are needed to find them [Le et al. 2022].

Incorrectness Logic has shown that it is not only possible to formulate a theory for bug-finding,
but it is in fact advantageous from a program analysis view; static analyzers can take certain
liberties in searching for bugs that are not valid for correctness verification, such as dropping
program paths for added efficiency. The downside is that the IL semantics is incompatible with
correctness analysis, therefore separate implementations and procedure summaries must be used.

In OSL, we seek to get the best of both worlds. As Raad et al. [2020, §6] put it, “aiming for under-
approximate results rather than exact ones gives additional flexibility to the analysis designer, just
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as aiming for over-approximate rather than exact results does for correctness tools.” The fact that
OSL supports over-approximation in the traditional sense as well as under-approximation in the
sense of Pulse invites the reuse of tools between the two, while still enabling specialized techniques
when needed (i.e., loop invariants for correctness, dropping paths for incorrectness). In addition,
OSL extends bi-abduction to programs with effects such as randomization for the first time.

OSL is not a simple extension of separation logic; it is designed from the ground up with new
assumptions, since the properties that make the standard SL frame rule sound (nondeterministic
allocation, must properties, and fault avoidance) are not suitable for reasoning about incorrectness
and effects. The addition of tri-abduction to our symbolic execution algorithms also means that we
can analyze more programs with control flow branching compared to Abductor. The power and
flexibility of OSL makes it a strong foundation for analyzing pointer-programs with effects.
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A PROGRAM SEMANTICS

We begin by providing definitions for natural orders, completeness and Scott continuity, which are
mentioned in Definition 3.3.

Definition A.1 (Natural Ordering). The natural order of a semiring (A, +, -,0, 1) is defined tobea < b
iff 3a’ € A.a+a’ = b. A semiring is naturally ordered if < is a partial order. Note that < is reflexive
and transitive by the semiring laws, so it remains only to show that it is anti-symmetric. That is, if
a<bandb < a,thena =b.

Definition A.2 (Complete Partial Semiring). A partial semiring (A, +, -, 0, 1) is complete if there is a
sum operator ;< x; such that the following properties hold:
(1) ¥I={i,...,i,} is finite, then } ;7 x; = x;, + -+ +x;,
(2) If 3 x; is defined, then b - 3 ;1 X = Xer b - xi and (Xer xi) b = Xjer xi-bforany b € A
(3) Let (Jx)kek be any family of nonempty disjoint subsets of I, so I = Jgex Je and Jy N Jp = 0
if k # €. Then, Yex Xjej Xj = Zier Xi-
This definition is adapted from Golan [2003, Chapter 3].

Definition A.3 (Scott Continuity). Consider a semiring (A, +, -, 0, 1) with partial order <. A function
(or partial function) f: A — A is Scott continuous if for any directed set D C A (where all pairs
of elements in D have a supremum), sup,.p, f(a) = f(sup D). A semiring is Scott continuous if )}
and - are Scott continuous in both arguments [Karner 2004].

In addition, we recall the definition of normalizable, which is stated as property (3) in Definition 3.3.
Definition A.4 (Normalizable). A semiring (A, +, -, 0, 1) is normalizable if for any well defined sum
Dlier Gi, there exists (b;);er such that 3,1 b; =1 and a; = (3;¢r ai) - b; for every i € .

Normalizability is needed to show that relations lifted by the ‘W4 functor have several properties,
for example that lifting is well behaved with respect to sums and scalar multiplication (Lemmas B.4
and B.5). We also show that normalization implies the weaker row-column property below:

Definition A.5 (Row-Column Property). A monoid (A, +, 0) has the row-column property if for any
two sequences of elements (a;)ic; and (b)) ey, if 2 ;e @i = 2 jey bj, then there exist (ux)kerxy such
that ;e u(j) = a;foralli € Tand };cu(j) = by forall j € J.

LEMMA A.6. Let (A, +,-,0,1) be a normalizable semiring (Definition A.4), then (A,+,0) has the
row-column property (Definition A.5).

Proor. Take any sequences (a;)ier and (b;)jey such that 3;c;a; = Xjeybjand let x = Xy a; =
ZJ-E] bj. Now, since the semiring is normalizable, there must be (a;);cr and (b;.)jej such that
Diera; = 2jeybj=1anda; =x-ajforalli € Iand b; = x - b} forall j € J. Letu(;;) = x-a; - b}.

Now we have:
Zu(,-,j)=Zx~a;-b;—=x-(Za£)~b}=x~]l-b}=x-b;-=bj

icl icl icl

And
Zu(i’j) =Zx-alf'b}=x-alf-(Zb})=x-a;-]l=x-a;=ai
JjeJ jeJ jeJ

]

In fact, it is known that if some monoid A has the row-column property, then the functor 4 of
finitely supported maps into A preserves weak pullbacks [Gumm 2009; Moss 1999; Klin 2009]. It has
also been shown that relations lifted by some functor preserve composition iff the functor preserves
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weak pullbacks [Kurz and Velebil 2016]. Combining these two results, we get that relations lifted
by ¥4 preserve composition if A has the row-column property.

In our case, the maps have countable support rather than finite, so the aforementioned results
do not immediately apply, however they do provide evidence that the row-column property is
a reasonable requirement. However, we require the stronger normalization property since lifted
relations also must also be well behaved with respect to scalar multiplication (Lemma B.5).

Remark 3. In Definition 3.3 we require that sup(A) = 1, which limits the models to be contractive
maps (the weight of the computation can only decrease as the program executes). This rules out,
for example, real-valued multisets where the weights are elements of the semiring (R, +,-,0, 1).
Still, there are more models than the ones we have presented including the tropical semiring
(R, min, +, co, 0), which can be used to encode optimization problems [Batz et al. 2022].

The fact that sup(A) = 1 is used in order to define Rep as a lifted relation (Appendix C.2), and
it is also used in the proof of Lemma C.5. It may be possible to relax this constraint, however the
more general version is not needed for the models we explore in this paper.

A.1 Proofs
LEMMA A.7 (SCALED SUMS). If );cr x; is defined, then Y ;c; x;i - y; is defined for any (y;)ier.
Proor. Since sup(A) exists, then y; < sup(A) for each i € I. By the definition of <, there exist

(y})ier such that y; + y; = sup(A). We also know that (3;¢; x;) - sup(A) exists, since A is closed
under multiplication. Now, we have:

(> %) - sup(A) = > xi - (yi +y})

iel iel

=le-~y,-+xi-y{

iel

=in-y,~+2xi-y{

iel iel

And by the semiring laws:

So, clearly the subexpression }};¢;x; - y; is defined. O

LEmMMA A.8 (TotaLiTY OF BIND). The bind function defined in Definition 3.7 is a total function (this is
not immediate, since it uses partial addition).

Proor. First, we note that )’ ;cqupp(m) m(a) must be defined by the definition of ‘W. By Lemma A.7,
we know that 3 ;equpp(m) m(@) - f(a)(b) must be defined too, for any family (f(a)(b))aesupp(m)-
Now, since bind(m, f)(b) = X zesupp(m) m(a) - f(a) (D), then it must be a total function. The result is
also countably supported, since m and each f(a) are countably supported and supp(bind(m, f)) =
Ugesupp(m)supp(f(a)). Finally |bind(m, f)| exists since:

[bind(m, )| = " > m(a) - f(a)(b)

besupp(bind(m,f)) acsupp(m)

=Y m@- > fa)b)

aesupp(m) besupp(bind(m,f))

=Y m(a)- > f(a)(b) = Y m(a) - |f(a)]

acsupp(m) besupp(f(a)) acsupp(m)
And the sum on the last line exists by Lemma A.7.
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THEOREM A.9 (FIXED POINT EXISTENCE). The function F(c e allocy defined in Figure 1 has a least fixed
point.

Proor. It will suffice to show that Ficalloc) is Scott continuous, at which point, we can apply
the Kleene fixed point theorem to conclude that the least fixed point exists. First, we define the
pointwise order for fi, fo: SX H — W(St) as fi C f; iff fi(s,h) E fo(s, h) for all (s, h), where
fi(s,h) T fa(s, h) iff there exists m such that f(s, h) + m = f2(s, h). Now, we will show that the

monad bind is Scott continuous with respect to that order. Let D be a directed set.

. f(a) if s = fok(a)
sup bind(m, f) = su m(s) - ; i
feg (m, f) fegsem%;(m) (s) { unity(s) otherwise

Now, by continuity of the semiring, suprema distribute over sums and products. It is relatively easy
to see by induction that the supremum can move into every summand in the series.

_ Z m(s) - { suprep fa) ifs = iok(a)

unita(s) otherwise
sesupp(m)
B (supD)(a) ifs=1.(a)
- Zm(s) { unitys(s) otherwise
sesupp(m)

= bind(m, sup D)
Finally, we show that F(c ailoc) is Scott continuous with respect to the order defined above.

sup F(C,e,alloc) (f) = /1(5’ h) sup F(C,e,alloc) (f) (S, h)
feD feD

= A(s, h). sup { bind([Cll0c (5. h), f) if [e] (s) =1

fep | unit(s, h) if [e](s)=0
—A(s.h) SUPfrep bind([Cl 10 (5. ), ) if [e] (s) =1
=AM Supfep unit(s, h) if [e](s)=0
3 bind([C]joc (s, h), supD) if [e] (s) =1
=0 h){ unit(s, h) ' if [e] (s)=0

= F(C,e,alloc) (SUP D)

Before proving that the semantics is total, we define the notion of compatible expressions.

Definition A.10 (Compatible Expressions). Given some outcome algebra (A, +, -, 0, 1), two expressions
e and e’ are compatible if [[e] (s) + [e’] (s) is defined for all s € S.

Though compatibility is a semantic notion, there are straightforward syntactic checks to ensure
that two expressions are compatible. For example, if e is a test—a Boolean-valued expression where
[e] (s) € {0,1} for all s € S—then e and —e are compatible. In the probabilistic semiring, p and
1 — p are also compatible for any p € [0, 1].

THEOREM A.11 (ToTALITY OF PROGRAM SEMANTICS). Given an outcome algebra (A, +,-,0,1), the
semantics of a program [C] .. (s, h) is defined as long as the following conditions are met:

(1) For each loop while e do C" appearing in C, the guard e must be a test. More precisely,
[e] (s) € {0,1} for everys € S.
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(2) If the semiring addition is partial, then each use of + in C must be guarded by compatible
expressions. That is, they must have the form (assume e; § C1) + (assume e; § C;) where e
and ey are compatible according to Definition A.10.

Proor. By induction on the structure of C. The cases for skip, assume, and all atoms are trivial.

> C = C; § C;. By the induction hypothesis, we assume [C1 ], and [Cz] .. are total, and by
Lemma A.8 we know that bind is total, therefore bind([C1]o. (s, ), [C2]10c) 18 total.

> C = C1+C,. If the semiring addition is total, then this case follows trivially from the induction
hypothesis. If not, then the program must have the form (assume e; §C;) + (assume e; §C,)
where e; and e, are compatible, so we have:

[Claioc (5. h) = [(assume e; § C1) + (assume ez § C2)] 1o (5, 1)
= [ed] (s) - [C1] (s, h) + [e2] (5) - [Ce] (s, )

By the induction hypothesis, [C1] (s, h) and [C;] (s, h) are defined. Since e; and e, are
compatible, [e1] (s) + [ez2] (s) is defined too. So, the claim follows by Lemma A.7.
> C = while e do C. Follows from Theorem A.9.

O
B PROPERTIES OF LIFTED RELATIONS
LEMMA B.1. If (my, my) € R, then |my| = |my|.
Proor. We know that there exists an m such that:
m; = Ax. Z m(x,y) and my = Ay. Z m(x,y)
yesupp(mz) xesupp(m;)
Now, we have:
| = 2. )" m(x,y)]
yesupp(m,)
= >, mxy)
xesupp(my) yesupp(my)
= > D, mxy
yesupp(msz) xesupp(my)
= 1y, > m(x,y)| = |my|
x€supp(my)
[m}
LEMMA B.2. (0,m) € R iffm = 0.
Proor.
(=) We know there must be some m’ such that m = Ay. ., csupp(0) M’ (%, y), but since supp(0) =
0, then m = 0.

(=) Let m" = 0, so clearly m” € WaR and we also have Ax. Xy esupp(0) (0(x,y)) = 0 and
Ay. ersupp(@) (0(x,y)) =0
O

LemMA B.3. If|mq| + |my| is defined, then m; + my is defined.
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Proor. Observe that:
[l + mal = " ma(x) + Y ma(x)
xesupp(my)  xesupp(my)
By associativity:
= > mi(x) + ma(x)
x€supp(m;)Usupp(ma)

Therefore my (x)+my(x) is defined for all x, and |m; +m;| is defined as well, so m;+m; is defined. O

LEMMA B.4. (my + my, m’) € R iff there exist m] and m;, such that m’ = m] + m; and (my,m]) € R
and (my, m;) € R.

Proor.

(=) We know that there is some m such that m; + my = Ax. Xy esupp(m) m(x,y) and m” =
AY. Yixesupp(my+my) M(X, Y). So, for each x, we have that m; (x)+mz(x) = Xy esupp(m) M(x. ).
Using Lemma A.6, we know there must be (xx)ke (1,2} xsupp(m’) Such that m;(x) = 2 yesupp(m’) X(iy)
for i € {1,2} and m(x,y) = x(1,y) + X(2,y) for each y € supp(m’). Now let m{'(x,y) = x(1,y)
and my (x,y) = x(2,y) andlet m{ = Ay. X\ equpp(my) M1 (% y) and my = Ay. 3\ esupp(my) My (X, Y).-
First, we establish that m{ + m, = m”:

mi+my = Ay ml(ny) + Y my(y) =AY ) xag + D Xy
x€supp(my) x€supp(mz) xe€supp(my) x€supp(my)

If x ¢ supp(my), then x(;,) = 0 and similarly for x(3,,) and supp(m3), so we can combine
the sums

=Ay. Z X(1,y) + X(2,y) = AY. Z m(x,y) =m’

xesupp(my+my) xesupp(my+my)

Ax. Z mi' (x,y) = Ax. Z X(i,y)

yesupp(m}) yesupp(m})

Now, observe that:

Now, for any y ¢ supp(m;), it must be the case that m;(y) = 0 and 50 ¥’ csupp(m;) X(iy) = 0,
so each x(; ;) = 0. This means we can expand the sum to be over supp(mj +mj) = supp(m’).

= Ax. Z X(iy) = M

yéesupp(m’)

We also know that m] = Ay'_zxesupp(mi) mlf’(x,_y) by definition, so (m;, m}) € R.
(<) We know that (m;,m]) € R and (mgp, m;) € R, so there are m{" and m,’ such that m; =
Ax. Zyewpp(m;.) m{(x,y) and m; = Ay. Yy esupp(m;) M; (%, y) fori € {1,2}. Let m” = m{"+m

(we can conclude that this is defined using Lemmas B.1 and B.3). Now we have the following:

Ax. Z m” (x,y) = Ax. Z my' (x,y) + my (x,y) = Ax. Z my (x,y) + Z my (x,y) = my + my

yesupp(m’) yesupp(m’) yesupp(m}) y€supp(m;)
Ay Y m (e y) = Ay ) mi(x )+ mf (x,y) = Ay. Y m{(xy) + Y mf (x,y) = m{+m)=m’
xesupp(my+my) xesupp(my+my) xesupp(my) xesupp(my)

So, (my + my, m’) € R.

LEMMA B.5. (a - my, my) € R iff there exists my such that my = a - m;, and (my, m) € R
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Proor.

(=) By the definition of relation lifting, there is an m such that a - m; = Ax. 2y esupp(my) M(X,Y)
and my = Ay. X xesupp(a-my) M(x,y). This means that for all x:

a-m(x) = Z m(x,y)
yesupp(mz)

By Definition A.4, we can obtain (b(x,y))yesupp(my) Such that 2 cqipp(ms) b(xy) = 1 and
m(x,y) = (Zzesupp(mz)m(x, z)) *b(x,y) for all y € supp(m;). Now, define m” (x,y) = my(x) -
b(x,yy and m;(y) = X yesupp(mi) M (x,y). We now show that my = a - mj:

a-my=2y.a- Z m” (x,y)

x€supp(my)
=Ay.a- Z my(x) - b(x,y)
xéesupp(my)
= Ay. Z a-my(x) - by y)
xesupp(my)

= y. Z ( Z m(x,z)) « b(x,y)

xesupp(my) zesupp(my)
=Ay. Z m(x,y) = my
xesupp(my)
We also have:
Ax. Z m” (x,y) = Ax. Z my(x) - b(x,y)
yesupp(my) yesupp(my)
Since we already showed that m, = a-mj, then it must be the case that supp(m;) = supp(m,).

= Ax.my(x) - Z bix,y) = Ax.my(x) -1 =m
yesupp(my)

And clearly mj = Ay. X v esupp(m;) m” (. y) by definition, so (my, mj) € R.
(&) By the definition of relation lifting, there is some m such that m; = Ax. Zyesupp(m’z) m(x,y)
and m) = Ay. Yy esupp(my) M(x,y). Now, let m" = a - m, so this clearly means that a - m; =

Ax. Zyesupp(a,mg) m’(x,y) and a - mj = Ay. X esupp(a-my) M (X, Y), s0 (a-my,a-mj) € R.

O
LEmMA B.6. If (x,y) € R, then (unit(x), unit(y)) € R
Proor. Let m = unit(x, y). We therefore have:
Ax'. Z m(x’,y’) = Ax".unit(x, y) (x’, y) = unit(x)
y'€supp (unit(y))
And similarly, Ay’. 3 o esupp (unit(x)) M(x",y") = unit(y), so (unit(x), unit(y)) € R. O

LEMMA B.7. For any relationsR C X XY andS C Y X Z, if (m1,my) € S o R, then (my,m3) € SoR.

PRrOOF. Suppose (m1, mz) € S o R, so there is some m € W (SoR) suchthat my = Ax. 3 csupp(my) M(X, 2)
and my = Az. Yy esupp(m;) M(% 2). This means that for each (x,z) € supp(m), there is some y such
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that (x,y) € Rand (y,z) € S.Let S’ C S be some relation where we choose one y for each z, so
that [{y | (y,z) € S’}| = 1for each z and {z | Fy.(y,z) € S’} = {z | Fy.(y,2) € S}. Now, let:
’ _ m; (Z) if (y, Z) es’ 7 _ _ ’
m(y9z)_{ 0 1f(y,z)¢5’ m (x,y)—zm(x,z) m3_/1y'zm (y’z)

zesupp(my) |(y,z) €S’ z€supp(my)

And now, we have the following:

Ax. Z m” (x,y) = Ax. Z Z m(x, z)

yesupp(ms) yesupp(ms) zesupp(my)|(y,z) €S’

Since S’ relates each z to exactly one y € supp(ms), this is equivalent to summing over all z

= Ax. Z m(x,z) = m

z€supp(mz)
Ay. Z m” (x,y) = Ay. Z Z m(x, z)
x€supp(my) xesupp(my) z€supp(mz)|(y.z) €S’

= Ay. Z Z m(x, z)
zesupp (my) | (y.2) €' x€supp(mi)

= Ay. Z my(z) = Ay. Z m'(y,z) = ms3

zesupp(my)|(y,z) €S’ ze€supp(my)

So, (my,m3) € R. Also, by definition we know that ms = Ay. Dzesupp(my) M (Y, 2) and my =
Az. 2 yesupp(ms) ™’ (Y, 2) since m’(y, z) is nonzero for exactly one y € supp(ms) and is equal to

my(z) at that point. This means that (ms, m,) € S, therefore (m;, my) € SoR.
O

LEMMA B.8. For any pair of directed chains m(;1) T m;z) C --- fori € {1,2}, if (m(1,n), M(2n)) € R
foralln € N, then (sup, ey M(1,n)> SUP,ery M(2m)) € R.
Proor. For any n € N, we know that there is an m, such that m(y ) = Ax. ZyESupp(mW)) my(x, y)
and m(z ) = Ay. ersuPp(ma,n)) my (x,y). Since each (m;n) )nen is a chain, sup,, oy m(;,n) exists, and:
sup m(y,,) = sup(Ax. Z my,(x,y))
nell "Ny esupp(mzm)

Since we use a pointwise order for functions, the sup of a function is equal to the sup at each point.
Additionally, since the semiring is continuous, the sup distributes over the sum.

= Ax. Z sup m, (x,y)

yESupp(sup ey m(zmy) N

And by a similar argument, Sup,,cjy M(2,n) = AY. 2 xesupp(sup, m(1m) SWPnen Mn (X, Y), s0:

(sup m(1,n), SUp M(2.m)) € R
neN neN
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C OUTCOME SEPARATION LOGIC

LeEmMA C.1 (NORMALIZATION). For any m # 0, there exists m’ such that |m’| =1 and m = |m| - m’.

Proor. By property (3) of Definition 3.3, there must be (bs)sesupp(m) such that m(s) = (X esupp(m) m(¢))-
bs and Y cqupp(m) bs = 1. Now, let m” be defined as follows:

s~ _ | bs ifsesupp(m)

m'(s) = { 0 ifs ¢ supp(m)
So, clearly [m’| = Xesupp(m) bs = 1. For every s, we also have m(s) = (X;esupp(m) m(1)) - bs =
|m| - bs = |m|-m’(s),som = |m|-m’. O

LEmMA C.2 (SPLITTING). If|m’| < [my| + |my|, then there exist m| and m;, such that |m/| < |my| and
|my| < |my| and m’ = m| + my.

PrOOF. Since |mq|+ |my| > |m’|, then there is some a such that:

Il + lma| = m'| +a=a+ " m'(s)
sesupp(m’)

So, by Lemma A.6, there exists (ux)ke(1,2}x(1+supp(m)) sSuch that for all i € {1,2} and s € supp(m’):

|m;| = Z U(is) and a= U + U and m’(s) = u(s) + U(zys)
s€l+supp(m’)
Now, let m] = As.u(;s) for i € {1,2}. So, m] + m} = As.u(y5) + u(z5) = m’. Now, it just remains to
show that |m;| > |m]|:

Imil = > a0y = gin) + Y mi(s) = ugin) + Im]| = m]

s€l+supp(m’) sesupp(m’)

C.1 The Outcome Separating Conjunction
LEmMA 4.3. IfmE ¢ and (m,m’) € frame(F), thenm’ £ ¢ ® F

Proor. By induction on the structure of ¢.

> ¢ =T.Since ¢ ® F = T, then clearly m’" F ¢ ® F

> @ = @1V @2. We know m E ¢ or m E ¢,. Without loss of generality, suppose that m k£ ¢;.
By the induction hypothesis, we know that m’ £ ¢; ® F. We can therefore weaken this to
conclude that m” £ (91 V ¢2) ® F. The case where m F ¢ is symmetrical.

> @ = @1 D @2. We know that m; £ ¢; and my E @ for some m; and m;, such that m = m; + m,.
Now, since (m; + my,m’) € frame(F), by Lemma B.4 there must be m] and m; such
that (my, m]) € frame(F) and (my, m;) € frame(F) and m’ = m{ + mj. By the induction
hypothesis, m] £ ¢; @ Fand m; £ ¢, ® F,som’ £ (91 ® ¢2) @ F.

> ¢ = (¢")q. We know that a = 0 and m = 0 or m; k£ ¢’ for some m; such thatm = a-m;. In
the first case, by Lemma B.2, m’ = 0 and so clearly m’ £ (¢”)¢ ® F. In the second case, since
(a-my,m’) € frame(A), by Lemma B.5 there must be m] such that (m;, m]) € frame(F)
and m’ = a - m{. By the induction hypothesis, m] £ ¢’ ® F, so therefore m’ £ (¢"), ® F.

> ¢ = ¢ : P. We know that |m| = 1 and every o € supp(m) has the form i.(s, h) such
that (s,h) € P. Since (m,m’) € frame(F), we know by Lemma B.1 that |m’| = |m| = 1.
Additionally, for every element in supp(m’), there must be an element in supp(m) related
by frame(F), so each element of m’ has the form i.(s,h W h’) such that (s,h) € P and
(s,h’) € F, and so clearly (s,h W h’) € P« F, and therefore also m’ k£ (¢ : P) ® F.
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]

LEMMA 4.4. Ifm £ @ @F, then there exist my, m|, and my such that (my, m}) € frame(F), m = m{+my
and my + my, E ¢ for any m;, such that |mj| < |my|.

Proor. By induction on the structure of ¢.

> ¢ = T.Suppose m £ T @ F. Let m; = m] = 0 and m, = m. Clearly (0,0) € frame(F) and
mj + my = 0+ m = m. Now, taking any m,, it is obvious that 0 + mj ¢ T.

> @ =@V . Weknow m £ ¢; ® F or m F ¢, ® F. Without loss of generality, suppose that
m £ @;. By the induction hypothesis, there are m;, m{, and m, such that (m, m{) € frame(F)
and m = m] + my and m; + m; & @; for any m;, such that |m;| < |my|. Now, take any such
m,, we know that m; + m, £ ¢;. We can weaken this to conclude that m; + m;, £ ¢1 V ¢;

> @ = @1 ® @y. We know that there are m; and m; such that m; £ ¢p; ® Fand my F ¢, ® F
and m = my + my. By the induction hypotheses, we get that there are uy, uj, up, v1, 01, and
vy such that my = u] +u, and mj, = 0] + v, and (uy,u]) € frame(F) and (v4,0;) € frame(F)
and u; +u; £ ¢y and 01 + 0, E @ whenever |u;| < |u,| and |v;] < |og].
Now, let m; = uy +v; and m] = uj + o] and m; = uy + v,. By Lemma B.4, we get that
(my, m]) € frame(F). We also have that:

mi+my=(u;+07) +(up+02) = (U] +up) + (0] +v) =my+my=m

Now, take any m; such that [m,| < |my| = |uz| + |v]. By Lemma C.2 we know that there are
uy and vy such that |uj| < |uz| and 0] < |0z| and m;, = u;, +v;. This means that uy +u; £ ¢,
and v + v, F @2. We also have:

(w1 +uy) + (01 +03) = (w1 +01) + (uy +05) = my +m;

So, m; +mj E @1 @ @s.
> ¢ = (¢’),. We know that there is m’ such that m’ £ ¢’ and m = a - m’. By the induction

hypothesis, we get that there are u;, u{, and u, such that (uy, u]) € frame(F), m’ = uj + uy,
and u; +u; £ ¢’ whenever |u;] < |uy].
Now, let m; = a - uy, m{ = a-uj, and my = a - u;. By Lemma B.5, we get that (m;,m]) €
frame(F). We also have that:

mi+my=a-uj+a-up=a-(u+ux)=a-m'=m

Now, take any m, such that |m;| < |m,| = a - |uy|. If mj = 0, then my + m, = m; = a - uy, so
my+my E (¢)q. If not, then by Lemma C.1 there is m;’ such that [m;/| = 1 and m; = |m;|-m;.
By the definition of <, there must be a’ such that [m}| + a’ = a - |uz| and by Definition A 4,
there must be a b such that [mj| = (|m;| +a’) - b= a - |uz| - b. Now, let uj, = |uy| - b - my/, so
|us| = luz| - b -1 < |uy|, and therefore u; + u,, £ ¢’ and also a - (u; + u;) E (¢”)q. Finally, we
have that:
a-(up+uy)=a-ur+a-|ugl-b-my =my+|myl-my =my+m,

So, we get that that m; + m) £ (¢')a.

> ¢ = €: P. We know that m k € : P = F, so |m| = 1 and every element of supp(m) has the
form i.(s,h W k') such that (s, h) € P and (s, h’) € F. Now, let my = 0, m] = m, so clearly
m = mj + my. To define my, first we fix a relation S C frame(F) such that for any h” such

that (s, h’") € P = F, there is a unique h and h’ such that b = h W h’ and (s,h) € P and
(1e(s, h),1e(s,h W ")) € S. Now, m is defined as follows:

m(0) = ) m(z)

7|(o,7) €S
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Now, we must show that (m;, m) € frame(F). To do so, first let:

, | m(r) if(o,7)eS
m'(0,7) = { 0 otherwise

Now, we have:

o Z m'(a,7) = Ao. Z m(7) = m

Tesupp(m) 7|(o,7) €S

, _ m(r) if (o,7) €S
At. Z m’(0,7) = Ar. Zi 0 otherwise
oesupp(mi) oesupp(my)

By the definition of S, there is exactly one o for each r such that (o, 7) € S, so:
=Ar.m(t)=m

So, (my, m) € frame(F), and this also means that |m;| = |m| = 1. Also, by construction, each
element of supp(m;) has the form i.(s, h) where (s,h) € P, so m; k ¢ : P. Since my = 0,
then it follows that m; + m;, k € : P for any m; such that [m;| < |m,| = 0.

]

Now, for the proof of the frame property, it will be necessary to relate states based not only
on whether they can be obtained by augmenting the heap, but we must also ensure that after
augmenting the heap, it is possible to observe the same allocation behavior. To that end, we
introduce a slightly modified frame’ relation.

frame’(F, X, alloc, alloc”) =
(s,h”)EF
(1e(s[X > n], h),ic(s,hWRh"))| V(so, ho). So(x) =n= U
alloc’ (g, hg) = alloc(so[X = s(X)], ho W R")
{(undef, undef)}

LemMma C3. Ifmk ¢, X ¢ fv(p) and (m,m’) € frame’(F, X, alloc, alloc”), thenm’ £ ¢ @ F

Proor. Let R = frame’(F, X, alloc, alloc”). The proof is by induction on the structure of ¢.

> ¢=T.Since p ® F =T, thenclearlym’ rp ® F

> ¢ = @1V @2. We know m E ¢ or m E ¢,. Without loss of generality, suppose that m E ¢;.
By the induction hypothesis, we know that m’ £ ¢; ® F. We can therefore weaken this to
conclude that m’ £ (¢; V ¢2) ® F. The case where m F ¢, is symmetrical.

> @ = @1 D @y. We know that m; £ @1 and my E ¢, for some m; and m; such that m = m; + ms.
Now, since (m;+m,, m’) € R, by Lemma B.4 there must be m] and m;, such that (my, m]) € R
and (my, m;) € Randm’ = m{+m;. By the induction hypothesis, m] £ ¢;®F and m; £ ¢, ®F,
som’ E (¢1® ¢2) ®F.

> ¢ =(¢")g.If a=0, then m = 0 and by Lemma B.2 m’ = 0, so m’ £ (¢")¢ ® F. Otherwise, we
know that m; F ¢’ for some m; such that m = a - m;. Since (a - m;,m’) € R, by Lemma B.5
there must be an m] such that (m;, m]) € Randm’ =a- m]. By the induction hypothesis,
miE@ ®@F som k(¢)a®F.

> ¢ = € : P. We know that |m| = 1 and every o € supp(m) has the form i.(s[X — n], h)
such that (s[X + n], h) € P, and since X ¢ fv(P), then it must also be that (s, h) € P. Since
(m,m’) € R, we know by Lemma B.1 that |m’| = |m| = 1. Additionally, for every element in
supp(m’), there must be an element in supp(m) related by R, so each element of m” has the
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form 1.(s, h W h’) such that (s,h’) € F, and so clearly (s,h & h’) € P x F, and therefore also
m E(e:P)®F.

]

LEMMA C.4. ForanyX ¢ fv(e), and alloc € Alloc, if (my, m;) € frame(F) and my +u k ¢, then there

exists an m} and alloc” such that (m}, my) € frame’(F, X, alloc, alloc’) and m} + u E ¢.

ProoF. Since (my, my) € frame(F), there is some m such that:

my = Ao. Z m(o,7) and my = Ar. Z m(o, 1)

resupp(mz) oesupp(my)

Since m must by countably supported, we can enumerate the elements of supp(m), assigning each
a unique natural number n. Let f: supp(m) — {n € N | 1 < n < |supp(m)|} be such a bijection,
and note that N € Z C Val, so the codomain of f contains valid program values. Now, let m’ be
defined as follows:

» ) m(j’lg(S’,h),T) ifEIs’.f_l(s(X)) — (ie(s',h),r)AS:s'[XHS(X)]
m’(ie(s, h), 1) = { 0 otherwise

m’(undef, ) = m(undef, 1)

Intuitively m’ is obtained by taking each (1. (s, h), 7) in the support of m and updating s so that X
has value f(i.(s, h), 7). Now, we define alloc” as follows:

alloc(s[X > s’(x)],hwh”) if3As’, A . fF71(s(X)) = (1 (s”, B'), 1c(s”, B W R"))
alloc(s, h) otherwise

alloc’(s, h) = {

First, we argue that alloc’ € Alloc. It is obvious that alloc’(s, h) cannot return anything in the
domain of h, since its definition relies on alloc, run on an even larger heap. In the definition of
alloc’, there are two cases. In the first case, |alloc’(s, )| = |alloc(s[X + s’(x)], hW h’")| = 1 and in
the second case, |alloc’(s, h)| = |alloc(s, k)| = 1.

We now show that supp(m’) C frame’(F, X, alloc, alloc”). Take any (o,7) € supp(m’). If
o = undef, then it must be the case that 7 = undef too, since m’(undef, r) = m(undef, ) and
supp(m) C frame(F), which only relates undef to itself, therefore (o,7) = (undef,undef) €
frame’(F, X, alloc, alloc”).

If instead o = i.(s, ), then there must be some s’ such that f~!(s(X)) = (i.(s’,h),7) and
s = s'[X — s(X)]. By the definition of f, that means that (i.(s’,h),7) € supp(m), and so
7 =1(s’, hWh”) for some h” such that (s’, h’") € F. In addition, by the definition of alloc’, for any
so and hy such that sy(X) = s(X), alloc’(sg, hy) = alloc(so[X — s'(X)], hy W h'"’), therefore:

(0,7) = (1 (s'[X = s(X)], h), 1c(s",h W k")) € frame’(F, X, alloc, alloc”)
Now, let m{ = A0. X - cqupp(my) M’ (0, 7) and observe that for all 7:

Z m’(o,7) = m’(undef, 7) + Z m’ (ie(s, h), T)

agesupp(m)) e (s,h) esupp(m))
m(undef, T)+Z Zm(ie(s[X o], h), 7)

e (s,h) esupp(m)) veVal

Z m(o, ) = my(7)

oesupp(my)
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So, we conclude that (m], m,) € frame’(F, X, alloc, alloc”). Finally, for any i.(s, h):

mi(ie(s,h) = Y m(ic(s,h),7)
Tesupp(my)
= D m ({eGIX = flic(s k)1, 7)
Tesupp(my)

= m(ic(s[X > F(ic(s, 7)1, h)

So m; and m] differ only in the values of X, which does not appear in ¢ by assumption, so m] k ¢.
(]

C.2 Replacement of Unsafe States

First, we provide the definitions of the Rep relation and the prune operation. Rep relates undef to
any other state and ¢, indicating that after framing, an undef state can become any other state, or can
diverge (4). All ok and er states are only related to themselves. The prune: ‘W (Stu{s}) — W(St)
function removes 4 from some program configuration m.

m(o) ifo# 4
0 ifo=4
Now;, by lifting the Rep relation, we can prove that replacing undefined states in some program

configuration does not affect the validity of outcome assertions. Intuitively, this is true because
undef can only be satisfied by T, which is also satisfied by anything else.

Rep = {(undef,0) | c e StU{4}} U{(0,0) | o € St} prune(m)(o) = {

LEMMA 4.5 (REPLACEMENT). Ifm £ ¢ and (m,m’) € Rep, then prune(m’) E ¢

Proor. By induction on the assertion ¢.

> ¢ = T. prune(m’) E ¢ since everything satisfies T.

> ¢ = @1 V @2. Without loss of generality, suppose m £ ¢;. By the induction hypothesis,
prune(m’) £ ¢;. We can weaken this to conclude that prune(m’) F @1 V ¢2.

> @ = @1 D @y. We know that m; £ @1 and my F ¢, for some m; and m; such that m; + my = m.
Since (m; + my, m’) € Rep, there must be some m7 and m; such that (m;,m]) € Rep
and (my, m;) € Rep and m’ = m] + mj. By the induction hypothesis, prune(m]) £ ¢; and
prune(m;) F @.Itis easy to see that prune(m])+prune(m;) = prune(mj+m;) = prune(m’),
therefore prune(m’) £ @1 ®, @s.

> ¢ = (¢')g. f a = 0, then m = 0, and by Lemma B.2 m’ = 0 too. So prune(m’) = 0
and prune(m’) £ (¢’)g. Otherwise, we know that there is an m; such that m; £ ¢’ and
m = a-my. Since (a-my,m’) € Fp, by Lemma B.5 we know there must be m] such that
m’ = a-mj and (my, m]) € Rep. By the induction hypothesis, prune(m;) k ¢’, so—since
prune(m’) = prune(a - mj) = a - prune(mj)—we get that prune(m’) £ (¢"), @ F.

> ¢ = (€ : P). By definition, undef ¢ supp(m), so m’ = m (since Rep only relates defined
states to themselves), which satisfies € : P by assumption.

O

C.3 The Frame Rule

LEMMA C.5_(SEQUENCING). Forany f,g: S X H — Wx(St) and relation R € St X St U {4}, if
(my, m3) € R and:

V(Lok(s1, h1), Lok (s2, h2)) € R. Im.  g(s2, hy) = prune(m) and (f(s1,h1),m) € R

Then, there exists m,, such that bind(prune(m,), g) = prune(my) and (bind(my, f), m;) € R.
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Proor. First, let f’,g": St = Wz (St) be defined as follows:

, (s, h) if 0 = 1ok(s, h) , (s, h) if 0 = 1ok(s, h)
flo) = { ﬁnitw(o) otherwise g'o) = { init(w(a) otherwise
Note that bind(m, f) = bindqy(m, f’) and bind(m, g) = bindqy(m, g’) for all m. Now, we argue
that if (0, 7) € R, then there exists m,, such that ¢’(z) = prune(m,.;) and (f’(c), my.;) € R. We
do so by case analysis.
> 0 = 1(s, h) and 7 = 1ok (s’, h’). By definition, ¢’(7) = g(s’, h’) and f’ (o) = f(s, h), so the
claim holds by assumption.
> ¢ = undef. In this case, f’(0) = unitqy (undef), which means that f’(o) is related to all
configurations of size 1 according to R. Now, since sup(A) = 1, it must be that |¢’(7)| < 1
and so there is some u such that |g’(7)| + u = 1. Now, let ms, = ¢’(7) + u - unitqy(4), so
clearly g’(7) = prune(my ;) and (f'(0),ms ) € R.
> In this final case, 7 cannot have the form i, since only ok and undef states are related
to ok states according to R, and we have already handled both of those cases. This means
that o must also not be an ok state, since ok states are only related to other ok states.
Therefore, /(o) = unitqy (o) and f’(r) = unitqy (7). By Lemma B.6, we conclude that
(unitay (o), unitay (7)) € R.
Given this, we know that for each o and 7, there must be some m ; and m, , such that g’(7) =
prune(m,, ;) and:

f'(0) =Ad’. Z m, (o', 7) Mgy = AT, Z m, (o', 7')
v’ €supp(mo,r) o’ esupp(f’ (o))

Since (my, my) € R, we know that there is an m such that m; = A0 Y resupp(myym (o, 7) and mp =
AT'ZUEsupp(ml)m(oﬁ 7) Now let:

m' (o', 1) = Z Z m(o,7) - m, (o', 7") my (') = Z m'(o’,7")
oesupp(my) Tesupp(my) o’ esupp(bind (my,f))
Now, we show that:

Ao’ Z m'(o’,7") = Ao”. Z Z Z m(o,7) - m, (o', 7)

7’ €supp(my) 7’ €supp(mj) o€supp(m;) T€supp(mz)
= Ao’. Z Z m(o, 1) - Z m, (o', 7')
oesupp(my) Tesupp(my) 7’ €supp(mj)

Now, supp(my) is all those 7’ such that m’(¢’, 7") # 0 for some o’ € supp(bind(m;, f)), which also
means that m; (o’,7’) # 0. Since the outer sum is over o € supp(m;), the terms we are summing
over (m; .(o’,7")) will be 0 unless o’ € supp(f”(0)). So, the last sum is equivalent to summing over
7’ such that there is a ¢’ € supp(f’(0)) such that m/ .(o’,7") # 0, which is exactly supp(m,, ;).

= AU"Z Zm(d, 7) - (Z mg..(0”,7))

oesupp(my) Te€supp(my) 7/ €supp(me,r)

=10". > mi(0) - f'(0)(0”) = bind(my, f)

oesupp(my)
So (bind(my, f), m;) € R. It now just remains to prove that bind(m;, g) = prune(m,):

prune(mj) = prune(Ar’. Z m’ (o', 7))
o’ esupp(bind(my,f))
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= prune(Ar’. Z Z Z m(o,7) - my (0',7'))
o’ esupp(bind(my,f)) resupp(mz) oesupp(m;)
= prune(Ar’. Z Z m(o,7) - Z m; (o', 7))
resupp(my) oesupp(my) o’ esupp(bind(my,f))

= prune(Ar’. Z Z m(o, 1) - Z m; (o', 7))

Tesupp(mz) oesupp(my) o’ esupp(f’ (o))

= prune(Ar’. Z Z m(o,1) - mg (7))
T€supp(mz) o €supp(m;)

=7 Z Z m(o, 1) - prune(mg, (7))
Tesupp(mz) o€supp(m;)

=7’ Z Z m(o,7) - g'(7)(7')
resupp(mz) o€supp(my)

= 3.3 ma(0) - (2)(2') = bind(my,g)
resupp(mz)

]

LEmMMA C.6. Let R = Rep o frame’(F, X, alloc, alloc”). If (1ok(s[X +— n], h), 1ok(s,h W h’)) € R and
(Zok (51, 11)s Lok (52, h2)) € R whenever h([e] (s)) € Val, then

(update(s[X > n], h, [e] (s[X — n]),s1, h1), update(s, h W K, [e] (s), s2, h2)) € R

Proor. Let £ = [e] (s) = [e] (s|X + n]) (since X cannot affect the program expression e). We
complete the proof by case analysis:
> h(¢f) € Val. It must also be the case that (h @ h’)(¢) € Val, since h’ is disjoint from h. So, it
just remains to show that (unit(sy, hy), unit(sy, b)) € R, which follows from Lemma B.6.
> h(£) = L. By a similar argument to the previous case, it must be that (h & h’)(¢) = L too.
So, we just need to show that (error(s[X + n],h),error(s,h W h’)) € R. We know that
(1er(s[X + n], h),ie(s[X — n],h W h’)) € R since R treats ok and er the same, so the
claim follows by Lemma B.6.
> ¢ ¢ dom(h). So, update(s[X +— n], h, [e] (s),s1,h1) = unitqy(undef), and since R re-
lates undef to all states, (update(s, h, [e] (s), s1, h1),m) € R for all m, which means that
update(s,h & ', [e] (s), sz, h2) is related trivially.
[m}

LEmMMA C.7 (THE FRAME PROPERTY). Let R = Rep o frame’(F, X, alloc, alloc”), soR € St x (StU{4}).
For any program C such that mod(C) N fv(F) = 0:

V(Lok(s, h), 1ok(s",h")) € R. Im. [Cl 0 (s, h") = prune(m) and ([C] (s,h),m) € R

alloc’
Proor. By induction on the structure of the program C.

> C = skip. In this case, [C] . (s, h) = unit(s, h) and [C],,. (s",h") = unit(s’, k"), so the
claim follows from Lemma B.6.

> C = C; § Cp. By definition, we know that [C], . (s, ) = bind([C1]10¢ (5, 1) [Celatioe)
and [C]j0c (87, B") = bind([C1] 41c (8" 1), [Calaioc)- By the induction hypothesis, we know
there is some m such that [C1] ;.. (s',h") = prune(m) and ([C1] 1, (s, h), m) € R. There-
fore by the induction hypothesis and Lemma C.5, we can conclude that there is some m’ such
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t_hat bind([[clﬂalloc (S’, h), [[Cz]]alloc) = prune(m’) and (bind([[clﬂalloc/ (S, h), [[Cl]]alloc/)’ m’) €
R, which completes the proof.

> C = C1 + Cp. We know that [Cy + Co] 0 (5 7) = [Cillaie (5 1) + [Colapoe (s, h) and
[C1+ Calaioe (87 1) = [Cillaoc (875 1) + [Calatioc (87, B'). By the induction hypothesis, for
each i € {1,2} we get that there is some m; such that [C;],,. (s’,h") = prune(m;) and
([Ci]iee (s> ), m;) € R. Using Lemma B.4 we can conclude that ([C; + Cz]o0 (5, B), my +
m3) € R. It now only remains to show that:

alloc’

prune(m; + my) = prune(m;) + prune(my)
= [[Cl]]alloc (S/, hl) + [[Czﬂalloc (S/, h,)
= HC] + Czﬂalloc (S/, h/)
We now move on to the cases involving state. Since (1o (s, h), Lok(s’, h’)) € R, then there must be
some n and h”’ such thats = s’[X + n], k' = hWh"”, (s’,h”’) £ F, and for any sy and hy, if so(X) = n,
then alloc’(sg, hg) = alloc(so[X +— s"(X)], ho W h””). Additionally, many of the cases have a single

outcome, so by Lemma B.6 it suffices to show that (o, 7) € R where [C] (s, h) = unityy (o) and
[Claoc (s”sA") = unitqy(7) in those cases.

alloc’

> C = assume e. Since s and s’ only differ in the value of X, which cannot affect the value of e,
then [e] (s”) = [e] (s). This means that both programs weight the computation by the same
amount, let this weight be a = [e] (s") = [e] (s). So, we get that [assume e] - (s, h) =
a-unit(s, h) and [assume e] ;.. (s', ") = a-unit(s’, h’). Since (Lo (s, h), 1ok(s’, h’)) € R, then
by Lemma B.6 (unit(s, k), unit(s’, k")) € R, so by Lemma B.5 (a-unit(s, h), a-unit(s’, h’)) € R.

> C = while e do C’. First, we will show that there exists m such that F?C, ealloc)(J') (s",h") =
prune(m) and (F<C, calloc’ >(J_)(s, h), m) € R for any (1o (s, h), 1ok (s’, h’)) € R. The proof is
by induction on n. If n = 0, then the claim holds using Lemma B.2:

F?C,Ee!a”“)(J_) (s",h)=L(s""h)=0= L(s,h) = F?C’,e,a[loc')(J‘) (s, h)
Now suppose the claim holds for n, we will show that it also holds for n + 1:
bind ([C" e (5 1), i, oy (1)) [e] (57) = 1
Fn+,1 (s" B = alloc (C’,e,alloc)
(Creatoe) (L) (8" ) { unit(s’, h’) if [e] (s) =0
and
bind([C’] (s, h), F" A(L) if[e](s)=1
Fn+/1 1)(s,h) = alloc’ (Ce,alloc’)
(Ceallocy (L) (5, 1) { unit(s, h) if [e] (5) = 0

Note that as we showed in the previous case for assume, [e] (s) = [e] (s’), so both executions

will take the same path. If [e] (s”) = [e] (s) = 1, then the claim holds by Lemma C.5 and the

induction hypothesis. In the second case, it holds by Lemma B.6.

Now, by the definition of prune, this also means that for any n, there exists a, such that:

(Fler enatiocry (L) (1) Fler 4 attoey (L) (8, 1) + @ - umit(4)) € R

Recall that 4 represents the nonterminating traces, and as we continue to unroll the loop,
the weight of nontermination can only increase, so the a, must increase monotonically and
therefore F?C, e.lloc) (L)(s",h') + ap, - unit(L) is a chain, so by Lemma B.8 we know that:

(supF<c,e>(J_)(s h), supF<c,e>(J_)(s', k') + a, - unit(4)) € R

And we can therefore conclude that there exists m such that [while e do C’] (s’,h’) =
prune(m) and ([while e do C’] (s, h), m) € R.
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> C = (x := e). We know the following:
[Clatioe (8'[X > n],h) = unit(s’[X + n,x — [e] (s'[X + n])], h)
= unit(s'[x — [e] (s")][X — n], h)
[Clatoe (8" RWA”) = unit(s'[x — [e] (s")],hwh"”)
Since x € mod(C), then x ¢ fv(F), so updating x in s will not affect the truth of F, therefore
(s'[x > [e] (s")],hw k") E F. In addition, since we did not modify the value of X, it is still
true that alloc’ (s, ho) = alloc(so[X > s"(X)], ho W ') for any s, hy with so(X) = n. So, we
know that:
(Lok (s"[x = [e] (s)][X > n], h), iok(s[x — [e] (s")], hw ")) € frame’(F, X, alloc, alloc”)

Putting this together along with the fact that Rep is reflexive finishes the proof.
> C = (x := alloc()). We know the following:

[Claoe (8"[X  n], h) = bindqy (alloc’ (s"[X > n], h), A(£,0).unit(s’[X > n][x > €], h[£ > v]))
= bindqy (alloc(s’, A W "), A(£, 0).unit(s"[x — €][X — n], k[ — 0v]))
[Claitoe (8", AW R"") = bindqy (alloc(s’, A W h”), A(€,0).unit(s"[x — €], (hW h"")[€ — v]))
= bindy (alloc(s’, AW k"), A(£,v).unit(s"[x — €], h[£ — v] W k"))
So it is clear that ([C] e (5 h)s [Claoe (5: 7 ¥ h')) € R since the two weighting functions
are identical except that [C] ;.. (s, h W h”") has h”" added at every state and just as in the
previous case, we did not update X, so the relationship between alloc and alloc” holds as

well.
> C = free(e). Using Lemma C.6, we only need to show that if h([e] (s”)) € Val, then:

(Lok(s"[X > n], h[[e] (s) — L]), Lok (s’, (RWA”)[[e] (s") — L])) € frame’(F, X, alloc, alloc’) C R

If h([[e] (s")) € Val, then [e] (s") € dom(h) and since h”’ is disjoint from h, then [e] (s") ¢
dom(h”), so (hw h”)[[e] (s') — L] = h[[e] (s') — L] w k", and clearly:

(Lok(s"[X = n], h[[e] (s") > L]), iok(s", h[[e] (s") > L]) W h")) € frame’(F, X, alloc, alloc”)
> C = ([e;] « e). Using Lemma C.6, we only need to show that if h([e;] (s)) € Val, then:
(Hok(s"[X = n], Al[ed] (") = [e2] (s, Lok (s, (W h")[[er] (") = [e2] (s)]))
€ frame’(F, X, alloc, alloc”)
CR
If k(e ] (s”)) € Val, then [[e;] (s”) € dom(h), and since A" is disjoint from h, then [e;]] (s’) ¢
dom(h"), 50 (h h")[[er] (5') > [e] ()] = W[[ea] (") > [ea] (5")] & h”. Now, clearly:
(Lok(s"[X = nl, hl[er] (") = [e2] (s)]), Lok (s”, hl[er] (s") = [e2] (s")] W h”)) € R
> C = (x « [e]). Using Lemma C.6, we only need to show that if A([e] (s’)) € Val, then:
(Lok (s[X > n][x > h([e] (")), h), Lok (s'[x > (hW h”)([e] (s")]),h W h"”)) € R

If h([[e] (s”)) € Val, then [e] (s”) € dom(h), and since h” is disjoint from h, then [e] (s’) ¢
dom(h”), sos’[x — (hwh”)([e] (s)] =s"[x — h([e] (s"))].
So, clearly (iok(s’[x +— A([e] (s)][X — n]), ), iok(s'[x — h([e] (s))]),hw h”) € R.

> C = error(). By Lemma B.6, it suffices to show that (i¢(s’'[X > n], h), 1 (s’,h W A")) € R,
which follows from the assumptions since R treats ok and er states in the same way.
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> C = f(€). Let C’ be the body of f. By the same argument used in the assignment case,

(Lok(s'[X = n][X — [€] (s)], h), iok(s'[X + [€] (s")]),hw h")) € R. So, the claim follows
from the induction hypothesis.

O

THEOREM 4.6 (THE FRAME RULE). Ifk (@) C (¥) and mod(C) Nfv(F) = 0, thenk (¢ ® F) C ({ & F).

Proor. Let R = Rep o frame’(F, X, alloc, alloc”). Suppose m £ ¢ @ F, take any alloc € Alloc, and
pick some X ¢ fv(¢,, F). Then by Lemmas 4.4 and C.4 we know that there are m;, m{, m, and

alloc” such that (m;, m}) € frame’(F, X alloc, alloc”) and m = m/ + my and my + m £ ¢ for any m;,
such that [m;| < |m;y]. So that means that my + |m3| - unit(undef) £ ¢. We know that:

[[C]]Z”oc,(ml + |my| - unit(undef)) = [C]! (m;) + |m3] - unit(undef)

+
alloc
So, therefore [[C]]Z”oc,(ml) + |my| - unit(undef) £ ¥ since £ (@) C (¢). Now, observe that (m,m]) €

frame’(F, X, alloc, alloc’) C R since Rep is reflexive. We also know that (|my| - unit(undef), my) € R
since R permits undef states to be remapped to anything. Therefore, using Lemma B.4 we get that:

(my + |my] - unit(undef), m) = (m; + |mz| - unit(undef), m; + my) € R

So, using Lemmas C.5 and C.7, we know that there exists some m’ such that [C] l[loc( m) = prune(m’)
and:

([[C]]leoc,(ml + |my| - unit(undef)), m’) € R C Rep o frame’(F, X, alloc, alloc’)
Where the last step is by Lemma B.7. All that remains now is to peel away the layers in the

above expression. More concretely, we know that there is some m’” such that ([[C]]T (my + |my| -
alloc

unit(undef)), m””) € frame’(F, X, alloc, alloc’) and (m”/,m’) € Fp. By Lemma C.3 m” £ ¢y ® F and
by Lemma 4.5, [C]', (m)E ¢ ® F.

alloc

]

D TRI-ABDUCTION

The full set of inference rules for the tri-abduction proof system is shown in Figure 6. The abduction
algorithm is given in Algorithm 1.

LEmMA D.1. IfP < [M] > Q is derivable, then M & P and M £ Q

Proor. The proof is by induction on the derivation of P < [M] > Q.

(1) Base-EmP. We need to show that IATI’ Aemp E ITAemp and IT AT’ A emp E IT" A emp,
both hold by the semantics of logical conjunction.

(2) BASE-TRUE-L. We need to show that IAII' A FII Atrueand IAII AS ETT' A Y,
both hold by the semantics of logical conjunction.

(3) Base-TruEe-R. This case is symmetric to Case 2.

(4) Exists. Here, we know that M £ A and M £ A’. We also know that X is not free in A’ with
Y removed and vice versa. Now let:

Z=XnY X' =X\Z Y =Y\Z

That is, Z is the variables occurring in both X and Y, X’ is the variables only occurring in
X and Y” is the variables only occurring in Y. This means that X /) 17', and Z are disjoint.
We first show that 3XY.M £ 3X.A. Suppose (s, h) 3XY.M. We know that (s',h) £ M
where s’ = s[X’ — 3,][Y’ — 3,][Z — uvs] for some 31,3, and 5. Given that we know
M E A, we now have (s’, h) £ A and therefore (s[Y’ + 0,],h) E 3AX.A (since X=X"U Z).
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Algorithm 1 abduce-par(P,Q)

1: if either BASE-EmP, BASE-TRUE-L, or BASE-TRUE-R apply then

2 return anti-frame M as indicated by that rule
3: else
4: for Each remaining row in Figure 6 from top to bottom do
5 result = 0
6 for Each inference rule in the row of the form below do
PP<a[M]>Q" R
P<a[M]>Q
7: if The input parameters match P and Q in the inference rule and R is true then
8: result = result U {M | M’ € abduce-par(P’,Q")}
9: end if
10: end for
11: if result # 0 then
12: return result
13: end if
14: end for
15: return 0
16: end if
Now, given that Yn (fv(A) \)_(> ) = 0, we know that none of the variables in Y’ are free in A,
and so we can remove them from the state to conclude that (s, k) F 3X.A.
It can also be shown that 3XY.M £ 3Y.A by a symmetric argument.
(5) Ls-START-L. Here, we know M E A xIs(es, e2) and M £ A’. We now want to show M = e;
es E Axls(e;,e;) and M ey > e3 E A" % ey > e3.
Suppose that (s, h) £ M * e; — e3, and so (s, h;) £ M and (s, hz) F e; — e3 for some h; and
hy such that h = hy W hs.
Since M k£ A = Is(es, e2), we get that (s, hy) F A = Is(es, e2) and recombining, we get that
(s,h) E A xls(es,e3) * e — e3. Now, Is(es, e5) * e; — e3 F 3X.e; — X * Is(X, ey) and
AX.e; > X *Is(X,e;) E Is(ey, ), so we get that (s,h) F A * Is(ey, e;) and therefore
Msxe; > e3 EAxls(er, ez).
We also know that M £ A’ which means that because (s, hy) £ M, (s, h;) £ A’. This means
that (s,h; W hy) E A’ % e; +— e3 and h = hy W hy, so we now have (s,h) E A’ xe; — e3,
therefore M x e — e3 E A" x e > e3
(6) Ls-StarT-R. This case is symmetric to Case 5.
(7) MATcH. Here, we know that M E A A e; = e3 and M E A’ A e; = e3. We want to show that
Msxe > eyeEAxe > eyand Mxeg > ep EA e > es.
Let us first show M # e; — ey E A * e; > ey. Because we know that M E Aande; — e E
e > ey, it follows that M x e; > e; E A e > e,.
Let us now show M x ey > e; E A’ x e; > e3. We know M E A’ A e; = e3, now suppose
that (s, h) £ M % e; > e, 50 (s, h) £ A’ A e; = e3 as well. This means that e; = ez in state s,
and therefore it must also be the case that (s, h) k e; > e3. Given what else we know, we
conclude that (s,h) E A’ x e; > e3.
(8) Ls-EnND-L. Here, we know that M £ A * Is(es, e5) and M £ A’. We want to show that

M = 1s(ej,e3) E A xls(ey,ex) and M = Is(ey, e3) E A" = Is(eq, e3).
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Base Cases

II AL ¥ false

Base-Emp
OAemp< [IIAT Aemp] > 11" Aemp

MIATL AY ¥ false IIATL A S ¥ false
” , S ~ BASE-TRUE-L S . Base-TrRUE-R
MAtrue< [IAIAY|>IT'AY ODAZ< [IIAT AZ]>IT" A true

‘ Quantifier Elimination ‘

Ad[M]>A Xn(fA)\Y)=0 Yn(Ea)\X)=0

AX.A < [IXY.M] > 3V.A
Resource Matching

A ls(es, ex) < [M] > A A< [M]> A xls(es, ez)
Ls-StART-L Ls-StarRT-R
Axls(e,e3) < [Mxejg— e3] > A xep > e3 Axej > e3<d[Mxe; — e3]>A xls(e, ez)

ExisTs

A/\22263<1[M]>A,/\82223

MarcH
Axejt>ey<d[Mxe > e] >N xef i e3

A xls(es, ep) < [M] > A A< [M]>Is(ey, e3) x A
Ls-EnD-L Ls-EnD-R
A xls(eg,ez) < [Mxls(er,e3)] > A xIs(eq, e3) Axls(er, ez) < [Mx*ls(er, ez)] > A x Is(eq, e3)

Resource Adding

A< [M] > A (2 *true) II' AY % B(ey, ez) ¥ false

MissING-L

AxB(ey,es) < [Mx*B(ep,ex)] > A (3 * true)

IIA (3 *true) < [M] > A II A S = B(ey, e) ¥ false

MissiNGg-R

II A (2 #true) < [M = B(eq, es)] > A’ = B(ey, e2)
ANer=e; < [M]>N Aep=e; ANer=e; < [M]>N ANep=e

Emp-Ls-L r Emp-Ls-R
Axls(e, ep) < [M] > A A< [M]> A xls(ey,ez)

Fig. 6. Tri-abduction proof rules. Similarly to Calcagno et al. [2009], in the above we use B(e, e2) to represent
either Is(ey, e2) or e; — es.

Let us first show M = Is(ey, e3) E A = Is(ey, e3). First, we know that M £ A * Is(es, e5), and so
M = ls(ey, e3) E A = Is(es, e5) = Is(ey, e3). Clearly, it is also the case that Is(es, ez) * Is(eq, e3) F
Is(eq, €2), and so combining these facts we get M = [s(e1, e3) E A * Is(eq, e3).
Let us now show MxIs(eq, e35) £ A"xls(ey, e3). We know that M £ A’, so clearly MxIs(eq, e3) F
A = Is(eq, e3).
(9) Ls-EnD-R. This case is symmetric to Case 8.

(10) MissiNG-L. Here, we know that M £ A and M E II’ A (X’ * true). This means we also know
that M k I’ and M E 2’ * true by semantic definition.
Let us first show that M« B(ey, e3) F AxB(ey, e2). Suppose that (s, h) £ M=B(ey, e2). We know
that (s, h1) E M and (s, hy) E B(ey, e;) for some h; and h; such that h = hy W h,. Since M E A,
then (s, hy) £ A. This means that (s, h) £ A = B(ey, e;), therefore M = B(ey, e5) E A = B(ey, e3).
Let us now show that M = B(ey, e3) E II” % (2’ x true). Here, we know that M & IT" % (X’ true)
and trivially B(ey, ez) E true. This means M * B(e, e5) £ IT” (X’ * true) * true; therefore,
M % B(ey, ep) £ IT" % (3 = true).
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(11) Missing-R. This case is symmetric to Case 10.

(12) Emp-Ls-L. We know that M E A A e; = e; and M E A’ A e; = e5. This means that M £ A/,
so the right side of the tri-abductive judgement is taken care of.
Let us now show M E A = Is(ey, e2). We first establish that e; = e; A emp E Is(ey, e)
by definition, since Is(e;,e2) <= (emp Ae; = ez) V IX.e; — X * Is(X, e3). Now,
we know that M £ A A e; = e;, which also means that M £ (A * emp) A e; = ey, or
equivalently, M k (A Ae; = e;) * (emp A e; = e3). Using e; = e; A emp E Is(ey, €2), we get
M E (A A e =ep) *Is(ey, e2), and by weakening we get M £ A = Is(ey, e2)

(13) Emp-Ls-R. This case is symmetric to Case 12

THEOREM 5.1 (TRI-ABDUCTION). If (M, Fy, F;) € triab(P, Q), then M E P « F{ and M £ Q * F,

Proor. In our tri-abduction algorithm, we call abduce-par on P * true and Q * true, so we know
based on Lemma D.1 that if P = true < [M] > Q * true is derivable, then M £ P xtrue and M E Q *true
since abduce-par operates by applying the inference in Figure 3. The procedure for finding F; and
F, follows that of Berdine et al. [2005b, §5] and so M £ P « F; and M E Q * F, by Berdine et al.
[2005b, Theorem 7]. )

E SYMBOLIC EXECUTION

E.1 Renaming

We first define the renaming procedure in Algorithm 2, which is identical to that of Calcagno et al.
[2011, Fig. 4] except that we additionally require € to be disjoint from X. Renaming produces a
new anti-frame M, which is similar to M except that it is guaranteed not to mention any program
variables and so it trivially meets the side condition of the frame rule. It additionally provides a

vector of expressions € to be substituted for the free variables in the postcondition Y so as to match
M.

Algorithm 2 rename(A, M, O, Q, X, %)

Let Y be the free 10g1cal variables of Q and all the assertions in Q.
Pick € disjoint from Y and ¥ such that Ax ME & =Y.

Pick M’ disjoint from X, Y, and Var such that A = M’ £ A = M[é’/f’]
return (¢, Y, M)

Now, we recall the definitions of the following two procedures:

triab’(Py, Py, Y1, 2, X) =
{(M', (r ® IX.F[X/5])[E/
(Y2 ® IX.F[X/X])[€/
| (M, Fy, F,) € triab(Py, P)
(2,Y, M’) = rename(emp, M, {i/1, Yo}, 0)}

biab’(3Z.A, Q, %) = )
{(M’, (y ® IZXF[X/X])[€/Y])
| (M, F) € biab(, Q) )
(e,Y,M’) = rename(A, M, Q, {y'}, Z)}

1.

Y
Y])

The biab” procedure is similar to AbduceAndAdapt from Calcagno et al. [2011, Fig. 4]. Since the
bi-abduction procedure does not support existentially quantified assertions on the left hand side,
the existentials must be stripped and then re-added later (as is also done in Calcagno et al. [2011,
Algorithm 4]). The renaming step ensures that the anti-frame M’ is safe to use with the frame rule.
We capture the motivation behind biab” using the following correctness lemma, stating that biab’
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produces a suitable frame and anti-frame so as to adapt a specification £ (ok : Q) C (/) to use a
different precondition P.
LemMa E.1. Forall (M, y’) € biab’(P, Q, ¥, %), if E (ok : Q) C (¢) and ¥ = mod(C), then

E (ok : Px M) C (y")

Proor. By definition, any element of biab’(P, Q, ¥, X) (where P = EIZ.A) must have the form
(M, (y®3ZX.F[X/X])[€/Y]) where (¢, Y, M’) = rename(A, M, Q, {¢'}, X) and (M, F) € biab(A, Q).
By the definition of rename, we know that:

AxM EAxM[E/Y]

Since M’ is assumed to be disjoint from Z, then 3Z.M’ iff M’, so we can existentially quantify both
sides to obtain:

P« M £3Z.AxM[E/Y] (1)
In addition, (M, F) € biab(A, Q), so we also know that:
A+MEQ=F

In Figure 5, we assumed all the logical variables used are fresh, so A must be disjoint from Y (the
free variables of Q and ¥), and therefore A[€/Y] = A, so substituting both sides, we get:

A M[E/Y] E (QF)[¢/Y]
We also weaken the right hand side by replacing X with fresh existentially quantified variables in F.
A« M[E/Y] k (Q+ 3X.FIX/R])[E/T]

Now, we can existentially quantify both sides of the entailment. Since logical variables are fresh, Z
is disjoint from Q.

3Z.A« M[E/Y] & (Q * 3ZX F[X/3])[¢/Y] (2)
And finally, we combine Equations (1) and (2) to get:
PxM E(Q=+3ZX.F[X/3])[E/Y] 3)
Now, given that £ (ok : Q) C (), we can use the frame rule to get:
E (ok : Q » AZX.F[X/X]) C (¢ ® 3ZX.F[X/Z])

This is clearly valid, since X = mod(C) has been removed from the assertion that we are framing
in, therefore satisfying mod(C) N fv(EZ)_fF[)_f/J?]) = (. We can also substitute & for Y in the pre-
and postconditions since we assumed that € is disjoint from the program variables ¥, and therefore
€ remains constant after executing C.

E (ok : (Q = AZX.F[X/X])[¢/Y]) C (¢ ® AZX.F[X/%])[¢/Y])
Finally, using the rule of consequence with Equation (3), we strengthen the precondition to get:

E (ok : P« M) C((y ® AZX.F[X/X])[/Y])
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The triab’ procedure is similar, but it is fundamentally based on tri-abduction and is accordingly
used for parallel composition instead of sequential composition. We include two separate proofs
corresponding to the two ways in which tri-abduction is using during symbolic execution. The
first (Lemma E.2) pertains to merging the anti-frames obtained by continuing to evaluate a single
program C after the control flow has already branched whereas the second (Lemma E.3) deals with
merging the preconditions from two different program program branches, C; and Cs.

LemMA E.2. If (M, §], ) € triab’(My, Mo, Y1, Y2, X) and & (@1 ® My) C (Y1) and & {p2 @ M,) C (i)
and X = mod(C), thenk (¢ ® M) C (V) and & (9, ® M) C (i,).

Proor. By definition, any element of triab’ (M, My, 11, 12, X) will have the form:
(M, (91 @ IR [R/ZD(E/T), (v © 3L B[R (/7))

Where (é, }7, M’) = rename(emp, M, {1, »},0,%) and (M, F;, F;) € triab(P;, P;). From rename,
we know that M’ E M[é’/?] and from tri-abduction, we know that M £ M; = F; fori = 1,2, so
M’ E (M; * F;)[¢/Y]. We can weaken this by replacing X in F; with fresh existentially quantified
variables to obtain M’ £ (M; * EI)?.Fi [)2/55]) [3/17]. By assumption, we know that k£ {(p; ® M;) C (;)
for i = 1, 2. So, using the frame rule, we get:

E (i ® (M;  AX.F[X/X])) C (¢ @ IXFi[X/%])

This is valid since 3X.F;[X/X] is disjoint from X (the modified program variables) by construction.
We also assumed in rename that € is disjoint from X, so we can substitute € for Y to get:

E ((p: ® (M; * 3X.F[X/F])[€/Y]) C (¢ ® IX.F[X/F]i)[€/Y])

Note that ¢;[€/ 17] = ¢;, since the logical variables Y are generated freshly, independent of ¢;, as
was mentioned in Figure 5. So, using the rule of consequence we get:

E (@i ® My C ((¢; ® 3X.F [X/X])[E/Y])
O

Lemma E.3. If(M, lﬂll, wz/) € tl"iab/(Pl,Pg, lﬁl,lﬁz, )_C:) and <Ok : P1> Cy <¢1> and E <Ok : P2> C, <¢2>
and X = mod(Cy, Cy), then e (ok : M) Cy (/) and E (ok : M) C; (V).

Proor. By definition, any element of triab’(Py, Py, 11, 2, X) will have the form:
(M, (11 @ X RX/ZDIE/T), (v © K F (/3D [E/7])

Where (€, Y, M’) = rename(emp, M, {1, »},0,%) and (M, F;, F;) € triab(Py, P;). From rename,
we know that M’ £ M[é/ 17] and from tri-abduction, we know that M £ P; = F; fori = 1,2, so
M’ £ (P; % F;)[¢/Y]. We can weaken this by replacing % in F; with fresh existentially quantified
variables to obtain M’ £ (P; = 3X.F;[X/X])[¢/Y]

By the frame rule, we know that £ (ok : P;  3X.F;[X/%]) C; (i ® X.F;[X/X]) since X.F;[X/%]
must be disjoint from the modified program variables X. By substituting into both the pre and
postconditions, we get £ ((ok : P; « X.F;[X/%])[¢/Y]) C; ((y: ® X.F;[X/%])[¢/Y]) (this is valid
since rename guarantees that € is disjoint from X). Finally, we complete the proof by applying the
rule of consequence with M’ £ (P; * X.F;[X/%])[¢/Y] to obtain:

E (ok : M) Ci (¢ ® X.F[X/Z])[E/Y])
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E.2 Sequencing Proof
LEMMA 5.3 (SEQ). If (M, ) € seq(¢,S,X), X = mod(C), and E {(ok : P) C (9) forall (P,9) € S, then
E{p@M)C(Y).
Proor. By induction on the structure of ¢.
> ¢ = T.We need to show that £ (T ® emp) C (T) holds. This triple is clearly valid since any

triple with the postcondition T is trivially true.
> @ = @1 >< @, where »< € {V, ®}. We need to show:

E (1> ¢2) ® M) C (Y 2 1)

Where (M, ¢;,Y,) € triab’(My, My, Y1, Y, X) and (M;, ¥;) € seq(g;, S, X) for each i € {1,2}.
By the induction hypothesis, we know that k (¢; ® M;) C (i), so by Lemma E.2 we get that
E (pi ® M) C (/). We now complete the proof separately for the two logical operators:

— @ = @1V @2. Suppose that m £ (¢1 V ¢2) ® M, so m £ ¢; ® M for some i € {1, 2}. Since
E (p; ® M) C (¢/), we know that [C]!  (m) & ¢/, and we can weaken this to conclude
that [C]], (m) E ¥ v 2.

— @ = @1 ® @2. Suppose that m £ (¢1 ® ¢2) ® M, and so there are m; and m; such that
m = my +my and m; £ @; ® M for each i. Since £ (p; ® M) C (¢/), we know that
[[Cﬂ;loc(mi) E /. We also know that [[C]}leoc(m) = [[C]]Lloc(ml +my) = [[C]]Zuoc(ml) +
[[CH :lloc(mZ)’ and so [[C]]leoc(m) F lﬁl’ ® ¢2/

> ¢ = (¢'),. We need to show that £ ((¢"), ® M) C ((/),) where (M, ¥) € seq(¢’,S,%). By
the induction hypothesis, we know that £ (¢’ @ M) C (). Now, suppose that m k (¢"), ® M.
If a = 0, then m = 0 and therefore [[C}]T (m) E (). If not, then there is some m’ such

alloc

thatm’ £ ¢’ ® M and m = a - m’. So, [[C]]Lloc(m’) E ¢'. We also know that [[C]]Z“oc(m) =
[[C]]leoc a-m)=a- [[C]]Znoc(m’), so by the semantics of ()4, [C]},,(m) E (¥)a.

> ¢ = ok : P. We need to show that £ (ok : P = M) C (') where (M, y’) € biab’(P,Q, ¥, X)
and (Q, ) € S. By assumption, we know that F (ok : Q) C (/). The remainder of the proof
follows directly from Lemma E.1.

> ¢ = er : Q. We need to show that £ (er : Q) C (er : Q). This trivially holds since any m
satisfying er : Q must consist only of i.,(s, h) states, and so [[C]]Lloc(m) =m.

]

E.3 Symbolic Execution Proofs

LEMMA E.4. Let:
£(8) = {(=e A emp, ok : me Aemp)} U
T {(My =My Ae ) | (Mg, @) € seq(ok : e A emp, [[C]]u (T), mod(C)), (Ma, ¥) € seq(¢, S, mod(C))}

Foranyn € N and (P, ¢) € f"(0), £ (ok : P) while e do C (¢).

Proor. By induction on n. Suppose n = 0, then f°(0) = 0, so the claim vacuously holds. Now,
suppose the claim holds for n, we will show it holds for n + 1. First, observe that:

10) = f(f(0))
= {(—e A emp, ok : me Aemp)} U

{(M; = My A e,y) | (M, ) € seq(ok : e A emp, [C]* (T), mod(C))
(Mz, ¥) € seq(o, f"(0), mod(C))}
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So any (P, ) € f™1(0) comes from one of the two sets in the above union. Suppose it is in the first,
so we need to show that k (ok : =e A emp) while e do C (ok : =e A emp). This is clearly true, since
the loop does not execute in states where —e holds and therefore the whole command is equivalent
to skip.

Now suppose we are in the second case, so the element has the form (M; = M, A e, 1) where
(M, ¢) € seq(ok : eAemp, [[C}]ﬂ (T), mod(C)) and (Ma, ¥) € seq(¢, (@), mod(C)).By Lemma C.5,
we know that £ (ok : M; Ae) C (¢) and by Lemma C.5 and the induction hypothesis, we get
E (¢ ® My) while e do C (¢). Using the frame rule, we also get £ (ok : M; « My A e) C (¢ & M),
and so we can sequence the previous specifications to get k£ (ok : M; = M, A e) C §while e do C ().
Now, since the precondition stipulates that e is true, the loop must run for at least one iteration,
so for any m £ (ok : My # My A e), [C5while edoC]’, (m) = [whileedoC]’, (m), and so

alloc alloc

E (ok : My = My A e) while e do C (). O

LemMA E.5. If for every (s, h) £ P and alloc € Alloc, there exists s’ and t’ such that [C] .. (s, h) =

unitqy (1c(s’,t")) and (s’,h’) E Q, thenk (ok : P) C (€ : Q)

ProoF. Suppose that m k ok : P. That means that |m| = 1 and all elements of supp(m) have the
form 1, (s, h) where (s,h) £ P. By assumption, we know that [C],;,. (s, h) = unitqy(Le(s’,t"))
such that (s’,t") £ Q. This means that every element of [[C]]Lloc(m) must have the form i.(s’,t")
where (s’,t') £ Q and also | [[CHZIIoc

distribution, so [[C]]L[0 (m)Ee:Q. m]

alloc

(m)| = 1 since each (s, h) does not change the mass of the

THEOREM 5.2 (SYMBOLIC EXECUTION SOUNDNESS). If (P, ¢) € [[CJ]ﬁ (T), then k (ok : P) C {¢p)

Proor. By induction on the structure of the program C.

v

C = skip. We need to show that £ (ok : emp) skip (ok : emp), which is trivially true.

C = C;5C;. By definition, any element of [C; § Cz]]ﬂ (T) must have the form (P+M, /) where
(P,p) € [[Cl}]tt (T) and (M, ¢) € seq(o, [[Cz]}ﬁ (T), mod(Cy)). By the induction hypothesis,
we know that £ (ok : P) C; {(¢) and by Lemma C.5 we know that £ (¢ @ M) C, (¢). Using
the frame rule, we get that k (ok : P« M) C; (¢ ® M) (given the renaming step used in seq,
M contains no program variables, so it must obey the side condition of the frame rule).
Finally, we can join the two specifications to conclude that k (ok : P = M) C; § Cy (¢).

> C = C; + C;. Any element of [C; +C2]]ﬁ (T) must have the form (M, ® ;) where
(M.}, 3) € triab’ (M, My, Y1, Y2, mod(Cy, C)) and (My,91) € [C1]* (T) and (Ma.y) €
[[Cz]]ﬂ (T). By the induction hypothesis, we know that £ {(ok : M;) C; (¢;) for i = 1,2. By
Lemma E.3 we know that £ (ok : M) C; (y//). Now, we show that k (M) C; +C, (¢/] ® 1,):
suppose m k£ M. By definition, [C; + Cz]]zuoc(m) = [[Cl]]Zuoc(m) + ﬂCgﬂleoc(m). Now, using

allod™) E ] for each
i € {1,2}. Combining these two, we get that HCI]]ZIIOC m) + HCZ]]ZHOC m) ey @y,

> C = assume b. Any element of [assume b]]ﬁ (T) must have the form (bAemp, ok : bAemp) or
(=bAaemp, (T)g). In the first case, we need to show £ (ok : b A emp) assume b (ok : b A emp).

v

T

what we obtained from Lemma E.3, we know that since m £ M, [C}]

Suppose m E ok : b A emp, then it’s easy to see that [assume leloc(m) = m, so the triple
is valid. In the second case, we must show £ (ok : =b A emp) assume b ((T)g). Suppose
m k ok : =b A emp, so [assume b]]Z”oc(m) =0,and 0 k (T)p.

> C = assume a. Any element of [assume a]]ﬁ (T) must have the form (emp, (ok : emp),), so
we need to show k (ok : emp) assume a ((ok : emp),). Suppose m E ok : emp, so we know

that [assume a]]z”oc(m) = a - m, therefore [assume a]]zuoc(m) F (ok : emp),.
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> C = while e do C. By the Kleene fixed point theorem, [while e do C]]ﬂ (T) = Upen f*(0)

where f(S) is defined as in Lemma E.4. So, any (P, ¢) € [while e do C]]’i (T) must also be
an element of f(0) for some n. We complete the proof by applying Lemma E.4.

The remaining cases are for primitive instructions, most of which are pure, meaning that each
program state maps to a single outcome according to the program semantics. In these cases, it

suffices to show that if (P, ¢) € [[c]]11 (T), then [c] o (s, h) E ¢ for all (s, h) E P by Lemma E.5.

> C = (x := e). Suppose that (s,h) F ok : x = X A emp, so s(x) = s(X) and h = 0. Now,
[x = €] e (5, 1) = unit(s[x — [e] (s)],h), solets” = s[x — [e] (s)]. Clearly, [e] (s) =
[e[X/x]] (s) since s(x) = s(X). It must also be the case that [e[X/x]] (s) = [e[X/x]] (s")
since s and s’ differ only in the values of x, and x does not appear in e[ X /x]. So, s"(x) =
[e] (s) = [e[X/x]] (s) = [e[X/x]] (s”), and therefore (s’, h) E ok : x = e[X/x] A emp. The
remainder of the proof follows by Lemma E.5.

> C = (x := alloc()). We need to show that k (ok : emp A x = X) x := alloc() (ok : AY.x > Y).
Suppose that m £ ok : emp A x = X, so each state in m has the form i,k(s, h) where
(s;h) E emp A x = X, so s(x) = s(X) and h = 0. We know that [x := alloc] ;. (s,h) =
bindqy (alloc(s, h), A(£,v).unit(s[x — £], h[£ — v])) where £ € dom(h). Let s’ = s[x > £]
and b’ = h[£ — o). Clearly, &' ([x] (s")) = h'(£) = v, so (s’,h’) E IY.x — Y. Since this is
true for all end states, and since alloc does not alter the total mass of the distribution, then
[x = alloc()]]znoc(m) Eok:3Y.x—> Y.

> C = free(x). There are three cases since specifications for free can take on multiple forms. In
the first case, we need to show that k (ok : e = X)) free(e) (ok : e /). Suppose (s, h) F e —
X, so h([e] (s)) = s(X). We also know that [free(e)] .. (s, h) = unit(s, h[[e] (s) — L]),
and since (s, h[[e] (s) — L]) E e 5, the claim follows by Lemma E.5.
In the other cases, we need to show that:

alloc

F (ok:eb) free(e) (er:et) and E (ok:e = null) free(e) {er: e = null)

Suppose (s, h) k£ e > and so h([e] (s)) = L. Clearly, [free(e)] . (s, h) = error(s, h), so by
Lemma E.5 the claim holds. The case where e = null is nearly identical.

> C = [e;] « es. There are three cases, first we must show that £ (ok : e; — X) [e;] «
e; (ok : e; — ey). Suppose (s,h) £ e — X, so h([e1] (s)) = s(X) and therefore that
memory address is allocated since s(X) € Val. This means that [[e;] < 2] 0. (5, h) =
unit(s, h[[e1] (s) — [ez2] (s)]) and clearly (s, h[[ei] (s) +— [e2] (s)]) F €1 — ez by defini-
tion, so the claim holds by Lemma E.5.
In the remaining case, we must show that £ (ok : e; ) [e1] « ey (er:e; ¥») and F
(ok : e; = null) [e;] « ey (er : e; = null). The proof is similar to the second case for free(e).

> C = x « [e]. There are three cases, first we must show thatF (ck: x =X Aer—> Y) x «
[e] (ok:x =Y Ae[X/x] — Y). Suppose that (s,h) E x = X Ae — Y, s0s(x) = s(X)
and h([e] (s)) = s(Y). We also know that [x « [e]]0c (s, h) = unit(s[x +— h([e] (s))], h).
Let s’ = s[x +— h([e] (s))], as we showed in the x := e case, [e] (s) = [e[X/x]] (s) =
[e[X/x]] (s"). So, this means that h([e[X/x]] (s")) = A([e] (s)) = s(Y) and s'(x) =
[e] (s) = s(Y), so clearly (s’,h) £ x = Y A e[X/x] — Y and the claim follows from
Lemma E.5.

In the remaining case, we need to show that £ (ok:e>) x « [e] (er:ew>) and F
(ok : e = null) x « [e] (er: e = null). The proof is similar to the second case for free(e).
> C = error(). We need to show that £ (ok : emp) error() (er : emp). Suppose (s, h) F emp.

Clearly, [error()] o (5, h) = error(s, h), and so the claim holds by Lemma E.5.

alloc
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> C = f(€). Any element of [[f(é’)]}ﬁ (T) must have the form (P A ¥ = X) where (P, ) €

seq(ok : X = €[X/x], T(f(X)), mod(f)). By Lemma C.5, we get:
F (ok: P AX =e[X/x]) f(%) (p)

Now, we need to show that £ (ok : P A % = X) f(€) {¢).Suppose that m £ ok : PAX = X. Let
m’ be obtained by taking every state (s, h) € supp(m) and modifying it to be i,k (s[X
[€] (s)], k). By a similar argument to the x := e case, we know that m’ £ ok : ¥ = Z[X/%).
We know P is disjoint from the program variables by the definition of seq, so m’ £ ok : P
as well, since m E ok : P and the only difference between m and m’ is updates to the
program variables. Let C be the body of f and note that [[f(f)]];loc(m’) = [[C]]Lloc(m’) since

the initial modification of the program state is just updating variable values to themselves.
We know from £ (ok : P A X = €[X/x]) f(X) {¢) that [C]’

H—f(g)ﬂ;loc(m) = [[C]]Lloc(m/)’ so IIf(E)]]Z”OC(m) Fo.

(m’) E ¢ and by definition,

alloc

In addition, we show that the two refinements for single-path computation and loops invariants
are sound too:

> Single Path. Any element of [C; + C;]* (T) has one of two forms. In the first case, we

need to show that £ (ok : P) C; + C; (¢ ® T) given that  (ok : P) C; {¢). Suppose that
m E ok : P. By our assumption, we know that [C;]’, (m) E ¢. Now, [C; + CZ]]leoc(m) =

alloc
[ (m) + [[Cz]]z”oc(m) and clearly [C,]1, (m) E T, so [C; + Cz]]THOC(m) F ¢ ® T.The

secoer‘ln(i)ccase is symmetrical, using the fact tallllgct + is commutative. ’
Loop invariants. We need to show that £ (ok : I) while e do C ((ok : I A =e) V (T)g) given
that £ (ok : I Ae) C (ok:I). Note that this case is only valid for deterministic or non-
deterministic programs (not probabilistic ones). Suppose m E ok : I, so every state
in supp(m) has the form i, (s, h) where (s,h) E I. By assumption, we know that ev-
ery execution of the loop body will preserve the truth of I, so either all the states in
[while e do C] ;o (s, h) must satisfy I and —e, or there are no terminating states. In other
words, [while e do C],. (s,h) E (ok : I A =e) V (T)g. In the deterministic case, we are
done since there can only be a single start state. In the nondeterministic case, each start
state (s, h) leads to a set of end states satisfying (ok : I A =€) V (T)g, then the union of all
these states will also satisfy (ok : I A =e) V (T)g.

]
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